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WALL INTERFERENCE IN A TWO-DIMENSIONAL-FLOW WIND TUNNEL, WITH
CONSIDERATION OF THE EFFECT OF COMPRESSIBILITY

By H. Jonian AiLeN and Warter G. VINCENTI

SUMMARY

Theoretical tunnel-wall corrections are derived for an airfoil
of finite thickness and camber in a two-dimensional-flow wind
tunnel. The theory takes account of the effects of the wake of
the airfoil and of the compressibility of the fluid, and is based
upon the assumption that the chord of the airfoil is small in
comparison with the height of the tunnel. Consideration is
given to the phenomenon of choking at high speeds and s
relation to the tunmel-wall corrections. The theoreoretical
results are compared with the small amount of low-speed ex-
perimental data available and the agreement 18 seen to be satis-
Sactory, even for relatively large values of the chord-height ratio.

INTRODUCTION

The need for reliable wind-tunnel data for the design of
high-performance aircraft has led in recent years to attempts
to make the conditions of the tunnel tests conform more
closely with the conditions prevailing in flight, especially with
regard to the Reynolds and Mach numbers. Because of
practical limitations in size and power, most existing wind
tunnels, whether high speed or low speed, are not capable
of providing full-scale Reynolds numbers for all flight con-
ditions. In order to obtain the highest Reynolds numbers
possible under the circumstances, it is necessary to use
models dimensions of which are as large as possible relative
to the cross-sectional dimensions of the tunnel test section.
The effect of such large size is to make the test conditions
depart further from the conditions prevailing in flight by
increasing the magnitude of the tunnel-wall interference. In
the case of tests at high Mach numbers, the interference is
increased still further by the tendency of the flow pattern
of a compressible fluid, if unrestrained, to expand as the
Mach number of the undisturbed stream increases. Since
the walls of a closed-throat tunnel restrain certain of the
streamlines at a fixed distance from the model, this expansion
is prevented, and the tunnel-wall interference and corrections
become progressively larger as the Mach number increases.
The results obtained in the tunnel must therefore be corrected
accurately for the effects of wall interference if they are to
be applied with confidence to the prediction of free-flight
characteristics.

In tests at high Mach numbers an additional complication
arises. 'The effect of a model in a closed-throat tunnel may,
in o sense, be thought of as equivalent to that of a constric-
tion in the throat of the tunnel. The resulting converging-

diverging nozzle formed by the model and the tunnel walls
then has roughly the same characteristics at high speeds as
the usual supersonic nozzle; that is, for some Mach number
less than unity in the undisturbed stream, sonic velocity is
reached at all points across a section of the tunnel at the
position of the model, and the flow in the diverging region
downstream of this section becomes supersonic. When this
occurs, increased power input to the tunnel has no effect
upon. the velocity of the stream ahead of the model, the
additional power serving merely to increase the extent of the
supersonic region in the vicinity of the model. At this
point the tunnel is said to be ‘“choked” and no further
increase in the test Mach number can be obtained. The
value of the Mach number at which choking occurs is thus of
extreme importance, since it determines the upper limit of
the range of Mach numbers which can be obtained with a
given combination of model and tunnel.

In testing airfoils to obtain section characteristics at
subsonic speeds, it has become common practice in modern
closed-throat wind tunnels to have the model span the tunnel
go that supporting struts and their accompanying inter-
ference cffects are entirely eliminated. If the tunnel has a
cross section of rectangular shape, this arrangement results
in 8 flow which is essentially two-dimensional.

The wall interference for such a two-dimensional-flow
wind tunnel has been the subject of numerous investigations,
the results in general being expressible as series in ascending
powers of (¢/k), where ¢ is the chord of the airfoil and & the
height of the tunnel. The effect of wall interference upon
the flow of an ideal fluid about & symmetrical airfoil at zero
angle of attack is determined to the order (c/h)? by Lock in
reference 1 and by Glauert in reference 2. The interference
for an infinitesimally thin, cambered airfoil at & small angle
of attack in an ideal fluid is given by Glauert to the order
(¢/R)? in reference 2, and investigations for the special case
of a flat plate have been carried out to & higher order of
accuracy by several writers. While the present report was
being prepared, work by Goldstein appeared (references 3
and 4) in which the interference is determined to the order
(¢/h)* for a general cambered airfoil of finite thickness in an
incompressible fluid, no restriction being made in the general
results as to the magnitude of the camber, thickness, and the
force coefficients. A still later paper by Goldstein and
Young (reference 5) gives the modifications necessary in the
previous results to allow for the effect of fluid compressibility
to the order (e/h)2.
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In the present paper, the tunnel-wall corrections are
determined to the order (c/h)? for the general airfoil in
8 compressible fluid for Mach numbers below that at which
choking occurs. It is assumed that the thickmess and
camber of the airfoil are small and that the interference
velocities are everywhere small as compared with the velocity
of the undisturbed stream. A discussion is also included of
the Mach number at which choking occurs. The various
results presented are of essentially the same nature as those
which already have appeared separately in the references
cited, but the methods of development and certain of the
final results are different, especially with regard to the
interference associated with lift. The validity of the final
corrections is examined by comparison with the available
experimental data. The equations also are compared with
the results of references 3, 4, and 5, and the afore-mentioned
differences are discussed.

The discussion is limited to airfoils placed midway between
the upper and lower walls of the tunnel. Mathematical
symbols are defined as introduced in the text. For reference,
a list of the more important symbols and their definitions is
given in appendix B.

DEVELOPMENT OF CORRECTION EQUATIONS

In an analysis of tunnel-wall interference it is desirable
to look upon the theoretical development of the tunnel-wall
corrections as consisting of two parts. First, it is necessary
to determine the manner and extent to which the tunnel walls
alter the field of flow about the airfoil from what it would
be if they were not present. Second, it is necessary to
calculate the effect of these alterations upon the measured
characteristics of the airfoil. The development of the
correction equations of this report has been divided into
these two general sections.

In reference 6, the use of the method of superposition to
determine the pressure distribution over the surface of an
airfoil section in free air is presented. It is shown that in
the calculation of the flow at the surface of a thin airfoil of
small camber, the effects of camber and thickness mey be
considered independently. This follows directly from the
fact that the velocities induced by the vortex sheet used to
represent camber and those induced by the source-sink system
used to represent thickness are simply additive in their
effect on the flow over the airfoil.

To treat the problem of wall interference, it is again con-
venient to consider the thickness and camber effects sep-
arately. The flow changes associated with airfoil thickness
are found by considering the interaction between the tunnel
walls and the base profile of the airfoil, the base profile
being defined as the profile the airfoil would have if the
camber were removed and the resulting symmetrical airfoil
placed at zero angle of attack. The interference effects
associated with airfoil camber are found by analyzing the
interaction between the tunnel walls and an infinitesimally
thin airfoil having the same camber as the actual airfoil. In
addition to the interference effects associated with airfoil
thickness and camber, it is necessary to consider a further
alteration of the field of flow caused by the confining influence
of the tunnel walls upon the airfoil wake. When the indi-
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vidual effects promoted by the interference betewen the walls
and the airfoil thickness, camber, and wake are known, the
total alteration in the flow at the airfoil is found by super-
position, and the characteristics of the airfoil in the altered
field of flow are compared with the characteristics in free air,
This comparison leads to simple formulas which enable the
prediction of the free-flight characteristics when the charac-
teristics in the tunnel are known.

The method of superposition, which is fundamental to the
entire analysis, is in general inapplicable to compressible flow
as the differential equation for such flow is nonlinear in the
physical plane. The separate solutions which are super-
posed are obtained, however, by assuming that the airfoil is
of small thickness and camber and that the induced velocities
are thus small as compared with the velocity of the undis-
turbed flow. On the basis of this assumption the equation
of compressible flow becomes g linear differential equation—
namely, Laplace’s equation (references 7, 8, and 9)—so that
superposition of velocities is, in this case, technically per-
missible. Furthermore, the tunnel-wall corrections are in
most cases rather small relative to the experimental quanti-
ties being corrected, so that it is not thought that the use of
this approximate method will lead to large errors in the final
corrected quantities.

INFLUENCE OF TUNNEL WALLS UPON FIELD OF FLOW AT AIRFOIL

Thickness effect.—The interaction between the base pro-
file and the walls of a two-dimensional-flow tunnel has been
considered by Lock for the case of an incompressible fluid
(reference 1; a discussion of Lock’s method is also given by
Glauert in reference 2). Lock’s method of analysis is
essentially to introduce an infinite series of images of the
base profile such as to satisfy the condition that there is no
flow normal to the walls, to replace each image by a suitable
source-sink doublet, and to calculate the velocity induced
at the base profile by this system of doublets. It is shown
that the net effect of the tunnel walls upon the flow at the
base profile is to increase the effective axial velocity of an
incompressible stream by the amount

(A V') y=AcV’ (1)
where
V’ apparent stream velocity at airfoil as determined from
measurements taken at a point far ahead of model
¢ a factor dependent upon size of airfoil relative to tunnel
A a factor dependent upon shape of base profile
The factor ¢ is defined by the equation

Ty
7748 (h) (2
where (c/h) is the ratio of the airfoil chord to the tunnel

height. The factor A can be determined for any base profile
from the relation

N N e )1 TG
where

Y, ordinate of base profile at chordwise station z

dy./dz slope of surface of base profile at =

P, base-profile pressure coefficient at = in an incom-
pressible fluid
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(It will be noted that the quantity As? in references 1 and 2 is
equivalent to -i-Ac2 in the notation of this report.) Values of

A for a number of base profiles are given in table I.

In appendix A, it is shown for linear theory that the effect
of compressibility upon the streamwise induced velocity
at a given point a large distance above or below a body in a
uniform stream is such as to multiply the velocity increment
for incompressible flow by the factor 1/[1 —M?¥? where M
is the Mach number of the flow far upstream from the body.
Applying this result to the velocity induced at the base
profile by each of the airfoils in Liock’s system of images, it
can be seen that for a compressible fluid the increase in the
effective axial velocity in the tunnel is

AV = AV’ @)

1
[1—(
where A’ is the apparent Mach number; that is, the Mach
number corresponding to the velocity 7’. The result of
equation (4) has also been obtained by an independent
procedure in referencs 5.

The value of A, as given by equation (3), is actually
slightly larger than that which would be obtained using the
first-order theory of this report. Moreover, second-order
theory would probably indicate that the value of A in the
compressible case would be slightly modified for the effect
of compressibility. A corresponding term for the drag
correction due to streamwise pressure gradient has been
shown in reference (10) to be slightly modified by the influ-
ence of compressibility. It is clearly inconsistent then to
employ the second order value of A without including the
offect of compressibility upon its value. This additional
complication, however, has not been introduced since the
velocity correction due to thickness is of major importance
in those cases for which (¢/h) is large and it is customary, and
properly so, to employ large values of (c/h) in low-speed
investigations only.

Consideration of the symmetry of the base profile and of
the system of images used by Lock to simulate the effects
of the tunnel walls indicates that the interaction between
the walls and the base profile does not induce velocities
normal to the center line of the tunnel. Similarly the base
profile does not affect the longitudinal velocity gradient in
the tunnel at the position of the airfoil.

Wake effect.—In the wake of an airfoil moving through a
real fluid, the total head of the fluid is less than in the region
outside the wake. This reduction arises from the increase
in thermal energy caused by fluid friction in the boundary
layer and in the wake itself and by any shock waves which
may exist in the vicinity of the airfoil. Considering a section
normal to the wake, it may be said that the static pressure
across the stream is nearly constant if the section taken is
not too close to the trailing edge of the airfoil. It follows
that the reduction in total head which exists within the wake
must appear almost entirely as a decrease in the local dynamic
pressure of the fluid. This decrease arises primarily from
o reduction in the local velocity and secondarily from the
reduction in local density which accompanies the increased
temperature within the wake. Thus, since the local velocity
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and density within the wake are both less than in the external
flow, the mass-flow rate per unit area is less inside the wake
than outside. This condition prevails both in the tunnel
and in free air. In the tunnel, however, the requirement of
continuity of flow between a transverse section upstream
from the airfoil and a section across the wake necessitates,
in addition, that the mass-flow rate per unit area outside of
the wake is greater than the mass-flow rate per unit area
ahead of the airfoil. In order to satisfy this requirement,
the velocity in the tunnel outside of the wake must be
greater than that of the undisturbed stream. This fact
implies that as the flow proceeds down the tunnel the velocity
of the main portion of the stream undergoes a gradual
increase from the value prevailing in the undisturbed
stream ahead of the model to some higher value downstream
of the airfoil. This does not hold true in free air, where the
velocities of the main flow upstream and downstream of the
model are equal. The interference between the wake and
the tunnel walls thus gives rise at the position of the model
to & velocity increment and a velocity gradient which are
not present in an unlimited stream. Further, as required
by Bernoulli’s equation, the velocity gradient is accompanied
by a longitudinal pressure gradient which likewise would not
exist in free air.

To determine the magnitude of these effects the procedure
is briefly as follows: T'wo stations in the tunnel are considered,
one far upstream from the model and one far enough down-
stream so that the wake has spread to the walls and the
velocity is again uniform across the tunnel. The difference in
static pressure between these two stations is evaluated as a
function of the measured drag of the awfoil. The pressure
gradient at the airfoil can be related to this pressure differ-
ence and hence to the drag of the airfoil by a convenient
analytic device, which is essentially the same as that used
by Goldstein (reference 3). The airfoil and its wake are
considered to be replaced by a fluid source located at the
position of the airfoil. It is specified that conditions far
upstream in the resulting hypothetical flow must be the same
as those existing in the actual stream. With this provision,
the magnitude of the velocity and static pressure far down-
stream can be determined as functions of the upstream
conditions and the strength of the source. The strength is
then related to the drag of the airfoil by requiring that the
static pressure difference promoted between the two stations
in the tunnel by the source flow is the same as that which
actually exists when the airfoil and wake are present. The
tunnel walls can then be replaced by an infinite system of
such sources directly above and below the position of the
airfoil at intervals equal to the height of the tunnel. The
system of image sources alone, however, would induce a
small finite negative velocity at infinity upstream, so that
it is necessary to superpose on the flow field an additional
uniform flow of equal velocity in the positive direction in
order to satisfy the original requirement that the conditions
far upstream shall be unchanged. The velocity of this
flow, which is readily determined as a function of the source
strength and hence of the airfoil drag, then gives the velocity
increment caused at the airfoil by the interference between
the wake and the walls. The longitudinal velocity and
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pressure gradients at the position of the airfoil are found in
terms of the drag by evaluating the flow induced at that
point by the image sources. It is apparent that this entire
method of analysis fails to satisfy the actual condition as
regards the velocity at infinity downstream. This dis-
crepancy arises out of the fundamentsal difference between
the actual flow in the wake and the source flow by which it
is represented and is unavoidable as long as this representa-
tion. is used.

F1GURE 1.—Source system for analysis of waks effect.

Consider the flow in a closed two-dimensional-flow wind

tunnel, as shown in figure 1. At a station far upstream,
the effect of the model upon the flow is negligible, so that
the velocity V7, the density p’, the static pressure p’, and
the absolute temperature 7" are constant across the stream.
At a station far downstream, where the wake has spread to
the walls, the velocity V?/, the density p’/, the pressure p’’,
and the absolute temperature 7"/ are again constant across
the stream.

The difference between the pressures p’ and p” can be
related to the measured drag of the airfoil by means of the
conditions of continuity, conservation of energy, and im-
pulse and momentum, together with the state relations for
g perfect gas. The condition of continuity is given by

o V’=p” v (5)

and, if it is assumed that the flow is an adiabatic process,
conservation of total energy requires that

WY _ TV e, o
or

PEEEF o
whers.

g gravitational acceleration
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J  mechanical equivalent of heat

¢, specific heat of gas at constant pressure

In modern wind tunnels the walls of the test section are
flared slightly to compensate for the growth of the boundary
layer on the walls, and only the drag of the airfoil therefore
need be considered. The impulse-momentum equation can
be written

D’
T=P"—p”+P, (V/)z_pI/(Vn)z

or

Qs Y o

where 1)’ is the drag of the airfoil and ¢, the drag coefficient
referred to the apparent dynamic pressure ¢’.

The velocity of sound V. in the undisturbed stream is
related to the absolute temperature by

(VY'=+BRT' = (y—1)gJe, T" (8)

where v is the ratio of specific heats and B is the gas constant.
By means of this relation, equation (6) can be written

Ve 2 T‘)

7 9
VT a—nary ©

and, from equation (5),

L ()| (10)

P (r—1 (L)

The state equation for a perfect gas then provides the relations

4
(7)) o

&Il PIIZT” TII
VAT T @y
and
P’ RT' (V' 2
p'(V’)’—(V’)g ( 7\3 7—1 (12)

Substitutious from equations (9), (10), (11), and (12) into
equation (7) gives

%c.,’ <7%>='Y( 1 )? 1_111:: _(751)(M22

_1>

=1L
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from which it can be found that

2(%4) : 1+7(M')2[1“ (ﬁ)]

(y—1)@L")? (r+1)@L)?

\/ [1— (M) g (72 (7%){ 24y (M")? -2“— <h> }(13)
(r+1)@L)?

For airfoils usually employed, the factor ¢, G::) is small.
Expanding the above expression and neglecting terms con-
taining ¢4 (%) to powers higher than the first gives

2(p—) |

— N — (h) (M’)’ (14)

By means of this relation, together with equations (9) and
(10), the static pressure difference in terms of ¢’ is obtained
from equation (7) as

o e (§) o+

Now, consider the airfoil and wake to be removed and
replaced by a fluid source of strength Q. If the flow con-
ditions far upstream are maintained unchanged, the mass
flow far downstream is then

(15)

ho" V"' =ho' V' 1+Q
or

PJ” V)" ___ Q
prI _1+hp/V/ (16)

where the subscript & denotes conditions now prevailing at
the latter station, For reversible adiabatic flow

=poe () -]

Since it is to be expected that (V,”/V") will be close to unity,
the right-hand side of this equation may be expanded in

ascending powers of [(T) l:l and terms contammg
powers higher than the first neglected. Thus,

Gt o

and equation (16) becomes

-0 )]s

It is reasonable to assume that the ratio %m is small as

compared with unity. The solution of the preceding equa-

tion to the first order iq hp}Q ; 18

(Tf _1+_M?h_9177 (18)

Bernoulli’s equation for reversible adiabatic flow can be
written

p,;’p'”_fy(ﬂime[“{l_%ﬂ arr{(v) ] %]

4
Since (T{%) is close to unity, this may be replaced by the
approximate relation

P=ps (VY
gl VI

Substitution from equation (18) and neglect of the term
involving the square of llp—;Q;T; then gives

P/_ ” Q 1
=WV =Ly (19)

Comparison of equations (15) and (19) shows that the source
strength required to promote the same pressure difference as
actually arises from the confinement of the airfoil wake is

e=22 %l 1 - ary) (20)

The tunnel walls are now replaced by an infinite system
of sources of strength @ spaced % distance apart and located
directly above and below the position of the airfoil as shown
in figure 1. This image system together with the source
which has been placed at the position of the airfoil satisfies
the requirement that the flow at the plane of the tunnel wall
shall be tangential to the wall.

As shown in the first of equations (A11) of appendix A, a
source of strength @ in a uniform flow of compressible fluid
will induce at a distance r from itself a streamwise velocity

AV = cos ¢ ’

Q
2wm{41 M?(1—M? sin? ¢)

where ¢ is the polar angle of the point in question and p
and M are the density and Mach number of the undisturbed
gtream. By virtue of this relation, the streamwise velocity
A; V' induced at a point on the center line of the tunnel by
the entire system of image sources is

;& Q COS ¢y
baV'=25 {41— (L) [1— (ML)* sin? ¢,.]}

where 7, and ¢ are the radial distance and the polar angle
of the point relative to the source & distance mh above or
below the center line and o’ and M’ are the density and
Mach number of the undisturbed flow in the tunnel. If the
distance from the position of the airfoil to the point on the
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center line is denoted by = (taken positive downstream), this
equation can be written

(. A Q z
MV e T 2, P = GOy TT
or
e Q T _ ﬂ___l‘_
AV ,rp'_\/]___(M')ﬁ|:2h-‘/1_(M')200thh-\/1—_(ﬂ1_')2 293]

@n

It can be seen by setting z=—  in equation (21) that the
image sources induce at an infinite distance upstream a
velocity

(AgV') —=

Q
20'R[1— ()7

In order to satisfy the original requirement that conditions
far upstream remain unchanged, this velocity must be
counterbalanced by the superposition of a uniform flow of
equal magnitude but opposite sign. The addition of this
flow at all points in the field will result in a speeding up of
the general flow at the position of the airfoil by the amount

Q
AV =5 i~ G0

or, substituting the source strength from equation (20),

a7 =[G () 3

If the factor = is defined as

r= i(%) ©22)

the velocity increment induced at the position of the air-
foil by the-interference between the wake and the walls may
thus finally be written for air (y=1.4) as

LA e v 23)

The longitudinal velocity gradient produced at the position
of the airfoil by the flow from the image sources can be found
by differentiating equation (21) with respect to ¢ and then
setting z=0. This gives finally

v’ _d(a.V") 7Q
d:c = d:c 6p'h2[1'— (M/)z]sﬂ

AV'=

or, by virtue of equation (20),

av’_ { 14 (y—1) (M) } xcd Ve
dz | I=@I)HTE | 128

It already has been noted that the interference associated
with the thickness of the airfoil has no effect upon the
longitudinal velocity gradient at the position of the airfoil.
It will be seen later that this also is true of the interference
associated with airfoil camber. Equation (24) thus gives
the total velocity gradient for the complete airfoil and walke.

(24)

The total pressure gradient at the position of the model
then is given by Bernoulli’s equation as

d yvr AV’
&=V &

or, substituting from equation (24) and setting y=1.4,

dp_ [14+0.4(M")? | wed'¢ ¢
BT aryn) " 26)

It is apparent from the symmetry of the system of image
sources that at the center line of the tunnel the interference
between the wake and the walls has no effect upon the ve-
locity normal to the direction of the stream.

It is shown later in this report that the camber of the air-
foil does not affect the stream velocity at the airfoil. Equa-
tions (4) and (23) together thus give the total increase
in velocity for the complete airfoil and wake. The effective
or true velocity V at the model is therefore

Ve V’{1+ = (;[,y]m Aot

It is evident that a correction to the apparent velocity in a
compressible flow implies corrections also to the apparent
density, dynamic pressure, Reynolds number, and Mach
number. These corrections are readily obteined on the basis
of the usual assumption that the flow is adiabatic. It is as-
sumed that the correction terms are small as compared with
unity, so that squares and products of these terms may be
neglected.

The true density p at the model is connected with tho
apparent density p’ by the isentropic relation

L
p

P[]

Substitution from equation (26) gives, after expansion as an
ascending power series and neglect of correction terms higher
than the first order,

(L (MY[I0AMY]
— @17 1= (1)}

P=p'{1—[ Cq } (28)

pV‘2 is related to the

apparent dynamic pressure ¢’ by the equation

(2 (XY

¢=7 (p'> (V’>

By means of equations (26) and (28) this can be written to
the first order as

The true dynamic pressure =5

{1 S e BP0 )

The true Reynolds number R is given in terms of tho
apparent Reynolds number R’ by the equation

2 ()()(F)
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where u and p’ are the coefficients of viscosity corresponding
to V and V’. According to von Kérmén and Tsien (refer-
ence 11), the coefficients of viscosity are related to the cor-
responding absolute temperatures by

" T 0.7
w=(r)

For reversible adiabatic flow it can be shown that

rrf-roer () 1]

which after substitution from equation (26) becomes to the
first order for air (y=1.4)

0.4(M")?
I~

30)

0.4(M")*[140.4 (M) ,

r=r'f1 Ao— i o] 61)
By means of these relations together with equations (26)

and (28), the true Reynolds number may be written

ol 107G [1—0.7(M7)] [140.4(M7)Y
R=E [1+[1—(M'>*]m‘*"+ 1— (L) (321

The true Mach number M is related to the apparent
Mach number M’ by the equation

y=mt(3) (%)
where V, and V,/ are the velocities of sound corresponding to
V end V’/. Since the velocity of sound in a gas is directly

proportional to the square root of the absolute temperature
alone. this equation may also be written

a=it (y)(7)"

With the aid of equations (26) and (31) the true Mach num-
ber then may be written to the first order

14-0.2(84")2
M=M’{1+[1_|_:_ ]u(/)zlsn Ao~

[1-0.2(AL")7] [1+0.4(A")7] ]
1— QL)

33)

At low Mach numbers, the terms containing rc,” in the
correction equations are usually negligible as compared with
the terms containing Ac. At supercritical Mach numbers,
however, where the drag coefficient is very large, the terms
with rc,’ are predominant.

Numerical values of the compressibility factors appearing
in equations (26), (29), (32), and (33) are given in table II.

Camber effect.—The theory” of the infinitesimally thin,
cambered airfoil in free air is developed by Glauert in refer-
once 12 (pp. 87-93). In this development the camber line
is replaced by a sheet of continuously distributed, bound
vortices. The flow induced at any point on the camber line
by this system of vortices is obtained by integration and is
combined vectorially with the flow of the undisturbed stream

to give the direction of the resultant flow. The distribution
of vorticity is then determined from the condition that the
resultant flow at all points on the camber line must be tan-
genital to the camber line.

In the actual calculation of the induced velocity, it is
agsumed that the vortices may be distributed along the
chord line rather than along the camber line and that the
induced velocity at any chordwise station on the camber
line is the same as the induced velocity on the chord line at
the same station. If the origin of coordinates is taken at
the leading edge of the airfoil (fig. 2), with the positive
z-axis along the chord line and the positive y-axis directed
upward, the induced velocity (p); in 2n incompressible fluid
at any point z, on the chord line is

v
e .
e 2z
[e— 25—
‘ [
o w_J x
v—" v (dT/dx)dx

FIGURE 2.—Mean-camber line in free afr.

33: (34)

l:—'ﬂ'o

Q) i——"

where dI'/dx is the vorticity per unit length at the point
z and ¢ is the chord of the airfoil. The direction of this
velocity i8 normal to the z-axis.

Glauvert (reference 7) has shown that a first approxima-
tion to the velocity induced at any point by a simple vortex
in a compressible stream can be obtained by simply multi-
plying the velocity induced at the same’point in an incom-
pressible stream by the factor

1[1-&25
1—M?%sin? ¢

where M is the Mach number of the undisturbed flow and ¢
the polar angle of the point in question as measured from
the direction of flow of the undisturbed stream. For points
on the chord of an airfoil which is inclined at a small angle
to the direction of the undisturbed stream the polar angle
¢ is small, and the factor (35) is sensibly equal to

Wil

(35)

If it is assumed that the effect of a vortex sheet in & com-
pressible fluid may be obtained by superposing the effects
of elementary vortices, the velocity induced at any point
2o on the chord line in a compressible fluid is

1,/1—M2 f (36)

T—T

If the undisturbed velocity of the free stream is taken
equal to the true velocity V at the airfoil in the tunnel,
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the condition that the resultant flow shall be tangential to
the camber line requires that, for all points on the airfoil,

-%=%—a (7).

where dy./dz is the slope of the camber line at z, and « is
the true angle of attack; that is, the angle the undisturbed
stream makes with the chord line in free air. (See fig. 2.)
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F1GURE 3.—Mean-camber line in tunnel.

The problem of the infinitesimally thin, cambered airfoil
in a two-dimensional-flow tunnel can be investigated by the
method of images; that is, the effect of the upper and lower
walls of the tunnel can be simulated by introducing an
infinite lattice of alternately inverted but otherwise identical
image airfoils above and below the original airfoil, asshown
in figure 3(a). By this artifice the direction of flow at the
position of the upper and lower walls can be made to coincide
with the plane of the walls, which is the required condition
of flow. As in Glauert’s analysis of the airfoil in free air, the
camber line of the airfoil and of each of its images is replaced
by a sheet of continuously distributed vortices, the vortex
distribution of all sheets being identical in magnitude but
alternately reversed in sign. The flow induced at any point
on the camber line of the original airfoil by the entire vortex
system is then obtained by integration. As before, the dis-
tribution of vorticity must be determined so that the result-
ant of the induced velocity and the stream velocity is
tangential to the camber line of the airfoil.

For the detailed calculation, the coordinate system is
taken as shown in figure 3(b). The origin of coordinates is
taken on the center line of the tunnel at the leading edge
of the airfoil. The positive z-axis extends downstream par-
allel to the undisturbed flow, and the positive y-axis is

directed upwards. It is assumed that the vortices may be
distributed along the z-axis and the induced velocities calcu-
lated at points on this axis. This arrangement is somewhat
different from the system employed for the airfoil in free

_ air, where the z-axis was taken along the chord line; how-

ever, since the angle of attack is assumed to be small, the
difference is of no consequence.

It is evident from figure 3(b) that, for an airfoil midway
between the upper and lower walls of the tunnel, the axial
velocity induced at any point on the z-axis by any one’
image is nullified by the velocity induced by the corres-
ponding image on the opposite side of the tunnel. It
follows that airfoil camber does not affect either the true
axial velocity or the longitudinal pressure gradient in the
tunnel at the position of the model.

The vertical velocities induced at any point on the z-axis
by any one image and its counterpart are, however, addi-
tive. Thus, for corresponding images situated at mh and
—mb, respectively, the vertical velocity (v/,m): induced at
the point z, in an incompressible fluid is

ar’ . T
(p'm),=2(_1)ﬂfc31‘% sin (¢m—§) dx

0 27"7':1

or
ar’
1 (& (z—x)dx
@ rm)i=— (=1) J; G—20) F mh)? (38)

where dI/dz is the vorticity per unit length at the point &
in the tunnel.

It will now be assumed that the chord of the airfoil is
reasonably small in comparison with the height of the tunnel.
This being the case, the approximation

(z—20)*+ (mh)* = (mh)?

is sufficiently precise for purposes of this analysis, and
the term (z—,)? in the denominator of equation (38) may
be neglected.

The vertical velocity (v’,); induced by all the images is
then found by superposition as

=3 2 T [ G e

e I & (39)

This equation can be corrected for the effect of compressi-
bility by means of expression (35). If, as was assumed, the
chord of the airfoil is reasonably small as compared with the
tunnel height, the polar angle ¢ of any point z, on the girfoil
with respect to any point z-on an image is nearly a right
angle, so that in this case the factor (35) is sensibly equal to

1

V1—1f?

The vertical velocity induced in a compressible stream by
all the images is then
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The vertical velocity v',, induced at a point z, by the
vortex sheet belonging to the airfoil itself, is given by
equation (36) if I'” and o', are substituted for T' and v,
respectively.

The total vertical induced velocity »” at any point x, on
the airfoil in the tunnel is then the sum of v/, and v',; that is,

9 = v l_jlz fc
- 2% 0

1 L ar’
P <7—mo>]35dx @1)

The condition that the resultant of the induced velocity
and the true axial velocity at the airfoil shall be tangential
to the camber line requires that, at all points on the camber
line,

v _dy, |,
o “?)

where o’ is the angle of attack of the airfoil in the tunnel;
that is, the angle the chord line makes with the center line
of the tunnel. The true velocity V rather than the apparent
velocity V7 is used in equation (42), since the vortex system
used to represent the cambered airfoil in the tunnel is actually
- operating in a stream of velocity V when the airfoil thickness
and wake are present.

RELATIONS BETWEEN CHARACTERISTICS OF AIRFOIL IN TUNNEL AND
IN FREE AIR

The preceding sections provide the basic information
required for the development of relations between the charac-~
teristics of the airfoil in the tunnel and in free air. The
relations for the lift and moment coefficients and angle of
attack are derived from the equations of the preceding
section by an extension of the method of Fourier series
employed in Glauert’s theory of thin airfoils (reference 12,
pp. 87-93). To this end, the vorticity distributions for the
airfoil in the tunnel and in free air are each represented by a
trigonometric series, the two series being similar in form but
having undetermined coefficients. By means of the equa-
tions of the preceding section, general relations are found
botween the coefficients of the two series. These general
rolations are then specialized to meet the requirement that
the airfoil shall have the same value of the cotangent term of
the series in the tunnel and in free air, this requirement being
shown to be necessary to assure that the essential character-
istics of the pressure distribution will be sensibly the same
in both cases. By means of the relations between the
cocflicients, expressions are then derived for the lift and
momoent coeflicients and angle of attack of the airfoil in free
air in terms of the characteristics measured in the tunnel.
The corresponding drag coefficient in free air can be found
from the drag measured in the tunnel by subtracting the
pressure drag caused by the interference between the walls
and the wake and referring the remaining drag to the true
instead of the apparent dynamic pressure. Finally, a
method is presented for correcting airfoil pressure distribu-
tions for the effect of tunnel walls.

To carry out the analysis, points on the airfoil are defined
by & new coordinate 6 such that :

:c=%c(1—cos 6) (43)
and
—Scsingds (44)

The distribution of vorticity along the chord of the airfoil
in free air is represented, after Glauert, by the trigonometric
series

dr 1 i .
—d—:c'=2V Ao 00t§ 0+ZA,, sin nd (45)
* nm=l

Equation (36) then gives the induced velocity at any point
6 on the airfoil as

v_

v 1— {—A0+n2:1A,,cosn9}

and equation (37) for the slope of the mean-camber line
becomes

%=a— JIZIPAA TIPS Ay cosnd  (46)
n=]
The coefficients are then given by the relations

a—J—l—MAFfo'%de .
4

_+ 1 2 f~dy.
Au—m;ﬁ a;—cosnﬂdﬁ

For the airfoil in free air the coefficients A4, for n=1 are
thus functions of the camber-line shape only and are inde-
pendent of the angle of attack. The coefficient 4, is a
function of both the camber-line shape and the angle of
attack.

The chordwise lift distribution in free air is given by

dL__ le"_ 2 dr
dz PV dz 1V dx

which after substitution from equation (45) can be written
in coefficient form as

1dL 1 e
P=E%=4{Ao cot30+33 4, sin nﬂ} (48)

Equation (48) illustrates the well-known fact that in free
air the chordwise lift distribution consists essentially of
two distinct parts. The one part, contributed by the sine
terms and generally referred to as the basic lift distribution
(reference 13), depends in magnitude and form only upon
the shape of the mean-camber line. The other part, defined
by the cotangent term and referred to as the additional lift
distribution, is fixed in form and depends in magnitude upon
the angle of attack as well as upon the camber-line shape.



164

The distribution of vorticity for the airfoil in the tunnel is
represented by

vl

cot + 0+2A,.'smnﬂ} (49)

n=1

Substitution of this expression, together with expressions
(43) and (44), into equation (41) gives, after integration,

T A+ (A5 40 )+
[ 4/~ A+ 40 | cos 0+
;?;;A" cos nb}

where ¢ is as defined by equation (2). Equation (42) for
the slope of the mean-camber line thus becomes

oy [ a4
JI=IP [Al’—l—_‘—’—m (2A0'+A1')] cos 0+
-\/l—jﬂﬁinA,' cos nd (50)
The coefficients in this case are given by the relations
r_ ’ dyc
el il

_1__2(-dy.

A',_wll_—lqw%ﬁt% cosnf db, n=2

Thus for the airfoil in the tunnel the coefficient 4y is a
function of both the angle of attack and the shape of the
camber line, but the functionsal relationship is altered from
what it was in free air by the inclusion of terms proportional
to ¢. Furthermore, because of the appearance of the term
involving A, in the second of equations (51), the coefficient
A4, is in this case also a function of the angle of attack, as
well as of the camber-line shape. Since Ay’ appears in this
equation multiplied by the factor o, the dependence upon the
angle of attack is, however, secondary as compared with
the dependence upon the shape of the camber line. As in
the case of the airfoil in free air, the coefficients A,’ for
n=22 are functions of the camber-line shape only.
The chordwise lift dist.ribution in the tunnel is given by

dLl
dx

]

dar’ 2 dr’
il A ar

or in coefficient form,

1dL/

*—_

q dz

4{Ao cot 1 0—]—}_‘_,11 smna} (52)
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In writing this equation the streamwise velocity gradient
which results from the wall-wake interference (equation
(24)) is ignored. It can be shown that the inclusion of this
variable would give rise to correction terms of the order oc,’.
Terms of this order are usually small as compared with tho
terms of order ¢ and r¢,” considered in the theory and may
therefore be neglected.

It is apparent from equation (52) that, as in the casc of
the airfoil in free air, the lift distribution in the tunnel may
be divided into two components. Now, however, the com-
ponent which depends upon the angle of attack includes both
the cotangent term and the first sine term. The component
which is a function of the camber-line shape alone comprises
the sine terms corresponding to »Z2. Again, these two
components could be denoted by the terms “additional” and
“basic”’ in the sense previously employed; howover, since
the phrase ‘“additional lift” already is so firmly established
with reference to the distinctive cotangent term alone, this
usage does not appear advisable in the present case. Ior
this reason, the terms of the series will be referred to by
reference to their form or their position in the series.

Since it is the same airfoil which is being considered in
both cases, equations (47) and (51) lead to the following
general relations between the coefficients in free air and in
the tunmnel:

;__ —_ 7 __O'__ 7 l 7
a— T B Aem ol — TP AY + 2 A0 4541 )
A=A~ QA+ AY)
(53)
A1=A2’
A=Ay J

In order to use these expressions to relate the characteris-
tics of the airfoil in free air with tbose in the tunnel, it is
necessary to choose some quantity or condition which will be
maintained the same in both cases and relate the remaining
quantities in accordance with this choice. 1f it were pos-
sible, the ideal procedure would be to keep all the aerody-
namic coefficients unaltered and to determine a correspond-
ing relationship between the angle of attack in the tunnel and
in free air. To do this it would be necessary to keep all
pressure and frictional forces the same in both cases, which
can be accomplished only if the pressure distributions are
identical. This would require that each of the coefficients
A4, in equation (48) be equal to the corresponding coefficient
A,/ in equation (52). It-is apparent from the second of
equations (53), however, that this requirement cannot, in
general, be satisfied.

Although the pressure distribution cannot be maintained
completely unaltered in the transfer from the tunnel to free
air, the general relations (53) can be specialized in such a
way that the essential character of the distribution is un-
changed. It is apparent that the component of lift contribu-
ted by the first, or cotangent, term in equations (48) and
(52) is different in form from that contributed by the series
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of sine terms. The cotangent component has an infinite
value at the leading edge (§=0) and a relatively large chord-
wise gradient of lift over most of the chord of the airfoil. The
sine-series component is finite at all points and, for airfoils
ordinarily encountered in practice, has a relatively small
chordwise gradient, except possibly in the immediate vi-
cinity of the leading or trailing edges. The cotangent
component with its infinite peak pertains, of course, only
to the hypothetical airfoil of infinitesimal thickmess and
zero leading-edge radius. For all real airfoils, the lift at the
leading edge can never be infinite; however, even in this
instance the lift distribution is characterized by a component
the form of which is peaked near the leading edge and the
magnitude of which varies markedly with the angle of attack.
The magnitude of this component is a primary factor in
determining the character of the pressure distribution, and
even g relatively small change in magnitude may cause con-
siderable change in the minimum pressure and in the chord-
wise pressure gradients attained on the surface of the airfoil.
Further, the aerodynamic characteristics which depend upon
these quantities, particularly the profile drag, maximum lift,
and critical compressibility speed, will be correspondingly
altered. It follows that properly to correct airfoil data
obtained in a wind tunnel to conditions in free air, the cor-
rected quantities should correspond to the same magnitude
of the peaked lift component as exists on the airfoil in the
tunnel.

The requirement that the peaked component of lift on
the real airfoil shall be the same in the tunnel and in free
air can be expressed with reference to the assumed airfoil
of infinitesimal thickness and camber by setting A, equal
to Ay in equations (53). The first of these equations, which
relates the angle of attack in the two conditions, then
becomes

(54)

1
el (A +5 40)
and the relations between the coefficients are

A=Ay

A=A — 30 24+ 4Y)

A=Ay (55)

A=A

Substitution from equations (55) into equation (48)
gives

P=4 [Ao' cot %0 — %7 (A + A) sin o+gA,' sin no}

or
P=P*—

T (A HA) sin 0 (56)

Thus, if the angle of attack in the tunnel and the angle of

attack in free air are such as to satisfy equation (54), the
843110—50——12
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chordwise lift distributions will differ by an amount defined
by the second term on the right-hand side of equation (56).
The lift coefficient for the airfoil in free air is

SN0

which, after substitution from equations (44) and (48), can
be integrated to give

== (24,+4,) (57)
The quarter-chord-moment coefficient is
1
- 7G%)()
which becomes after integration
Cn, == (Ai—45) (58)

4

In usual wind-tunnel practice, the measured coefficients
are referred to the apparent dynamic pressure ¢’. The lift
distribution over the airfoil in the tunnel in terms of ¢’ is

1dl_2 g dr

P &~V

Substitution from equation (49) gives

pPr= q,[Ao' cot g 0+ A, smnB} (59)

n=1

The lift and moment coefficients of the airfoil in the tunnel
as referred to the apparent dynamic pressure are then,
respectively,

of = [ Pa(E)=r; cag+ar) (60)

and

onf =[P (59 ()-FF w-a0 @

Relations between the coefficients in free air and in the
tunnel can now be found with the aid of equations (55).
Substitution of values from these equations into equation
(57) gives

er=r(24, +A4/) (1—1—_%E>

el ({__c
=e; q (1 W— )
Substitution from equation (29) and neglect of correction
terms of higher than the first order then give
2— (M")?
Ci=¢C; {1—‘1 Unﬁ [1 (‘%4-,)2]3/2 Aoc—

2— ()] [14-04M)7 ]
1— Ly
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From equation (33) it can be seen that, to the first order, M
may be replaced by M’ in this equation. The final equation
for the correction of the measured lift coefficient is therefore

’ la 2— (M")?
c1=0Cy [1—1_(M,)2 [1_(M,)2]3/2 Ao—
(M')’] (1+0.4(34)7
APt oy | (62)

Similarly, substitution of values from equations (55) into
equation (58) gives

Cny =—7 T (A —A2')+ A+ 4y) 1= Ma
_ﬂi R
g (c”‘% g I—H’)

To the order of approximation previously employed, the final
equation for the correction of the measured moment coeffi-
cient can be written

Oy =Cm, { 1= [2—(1\(77’%’

[2— @) [1+0.4 (M")7]
1— (L

The corresponding angle of attack in free air can be found
from equation (54). Combination of equations (60) and
(61) gives

ol | el =ty 09
¢ +4cm,’

il g€ +
Ay +5 4 =g o

To the first order, equation (54) then gives for the corrected
angle of attack in radien measure

a= a-l-—m{c, —l—4c,,,%} (64a)
or in degrees
amol LB {c'+4c ’ (64b)
b1 Q7| T4ms

Numerical values of the compressibility factors appearing in
equations (62), (63), and (64) are given in table II.

It should not be implied from equations (64) that the
general inclination of the stream at the position of the airfoil
in the tunnel is actually different from what it would be if the
walls were not present. The equations indicate rather that,
with regard to the magnitude of the cotangent component of
lift distribution, an airfoil at a given angle of attack in the
tunnel behaves as though it were at a different angle in free
air. This difference occurs because the tunnel walls give rise
effectively to a change in the curvature of the stream at the
position of the airfoil.

As was indicated previously, the essential character of the
pressure distribution over a given airfoil will be the same
in the tunnel and in free air, provided the magnitude of

tho cotangent lift component is the same in both cases; that
is, provided the angles of attack are such as to satisfly
equations (64). The exact shape of the pressure distribu-
tions, however, will still differ slightly for two reasons:
(a) The interference between the lift and the tunnel walls
causes a difference in chordwise lift distribution as required
by equation (56), and (b) the interference between the wake
and the walls gives rise to a longitudinal pressure gradient
defined by equation (25). The effect of these two influences
upon the remaining airfoil characteristic, the profile-drag
coefficient, must be considered.

As given by equation (56), the chordwise lift distributions
in the tunnel and in free air differ by an amount

AJ_D=P"-—P=1—f"F @A, +Ay) sin 0

which, by virtue of equation (60), may be written to the
first order as

AP=% Tl sin ¢ (66)

The changes in peak pressure and pressure gradient brought
about by this increment of lift distribution, unlike the
changes which would accompany even a minor alteration of
the cotengent lift component, are ordinarily small. At low
Mach numbers the drag depends primarily upon the char-
acter of the flow in the boundary layer, and, since this {flow
will not ordinarily be altered greatly by these small changes
in the pressure distribution, the increment of lift distribution
should have only a small effect upon the profile drag. At
high Mach numbers the drag is determined primarily by the
total-head losses in the shock waves which appear after the
critical Mach number is reached; that is, after the local
speed of sound is obtained at the minimum pressure point on
the airfoil. The critical Mach number is usually reduced by
the change in peak pressure accompanying the change AP
in lift distribution, but it can be shown that this reduction
is ordinarily very small. It is reasonable to expect that the
change in profile drag at a given supercritical Mach number
is correspondingly small. These changes are discussed in
further detail later in the report, but for the present it may
be assumed that the difference in chordwise lift distribution
between the tunnel and free air has only a negligible effect
upon the profile drag.

For usual airfoils and drag coefficients, the longitudinal
pressure gradient defined by equation (25) is also small, and
its effect upon the boundary-layer flow and hence upon the
frictional drag of the airfoil may be neglected. It will,
however, increase the pressure drag by an amount which is
comparable to differences already retained in the corrections
to the lift and moment. This increase in pressure drag
must be subtracted from the drag measured in the tunnel to
obtain the true profile drag of the airfoil in free air.

Glauert has shown (reference 2, pp. 62-63) that in an
incompressible fluid the drag experienced by an airfoil as
the result of a streamwise pressure gradient is, in the nota-
tion of this paper,

_ dp_ 1e %
AD=—g2 T A o= A 7 (66)
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In appendix A, it is shown that to the order of the linear
theory the relationship between drag and streamiwise pres-
sure gradient is unchanged by the effect of compressibility.
However, the use of factor A in equation (66) implies, as in
the case of the velocity correction due to thickness, a second
order correction which should properly be modified for the
effect of compressibility. This modification which has been
detormined by Ludwieg, reference (10), is not included here
for the reason previously cited. Substitution in equation
(66) of dp/dz from equation (25) then gives for the drag due
to the interference between the wake and the walls

pmere | FEOATLY

The true profile drag of the airfoil in free air is then

D=D'—AD
- 1404(M7)?
=6 q "{ ~I—@2yPE A }

and the corresponding drag coefficient referred to the true
dynemic pressure is

c,,———c¢< ){ 1+04(M,)2A0'}

Substitution from equation (29) gives for the final correction
to the measured drag coefficient

Ca=c { — (M)? 1+04(M)?
a=ca [‘_Hﬁﬁ W
[2— (M’)*] [(3;;)’4(114')*] } ©7)

It will be noted that, of the two correction terms involving
Ac in this equation, the first appears as a result of the change
in dynamic pressure occasioned by the interference between
the walls and the airfoil thickness; the second represents the
effect of the pressure gradient induced by the interference
between the walls and the wake. The correction term con-
taining 7c,’ appears as a result of the change in dynamic
pressure caused by the wall-wake interference. Numerical
values of the functions of A4’ which appear in equation (67)
are given in table II. The corrected drag coefficient cor-
responds, of course, to the corrected lift and moment co-
afficients as given by equations (62) and (63) and to the
corrected angle of attack as given by equation (64a) or (64b).

The drag correction of equation (87) was determined
particularly for drags measured with a balance and, as de-
rived, is not necessarily correct for drags measured by the
wake-survey method. It can be shown, however, from
theoretical considerations of momentum and continuity in
a two-dimensional-flow tunnel that for normal ratios of
airfoil chord to tunnel height, the ordinary type of wake
survey derived for free-air conditions gives, when applied
in the tunnel, & value of the drag equal to that measured
by the balance except for a negligible difference of less than
one-half of one percent. Equation (67) may thus also be
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used to correct the drag coefficients determined by the wake-
survey method.

It should be noted that no correction to the drag has been
made for any pressure gradient which may exist inherently
in the tunnel as a result of the streamwise growth of the
boundary layer on the tunnel walls. Most modern tunnels
are constructed so that this pressure gradient is sensibly
zero; however, if such a gradient does exist and its magnitude
is known, an approximate correction to the airfoil drag can
be made by means of equation (66).

There remains the necessity for correcting the measured
pressure distribution over the surface of the airfoil. The
pressure at any point on the airfoil is conveniently expressed
by the pressure coefficient S; defined by

H

Sx= _q— ! (68)
or by the pressure coefficient P; defined by
P=brE (69)

where p; i3 the local static pressure on the surface of the air-
foil and H, p, and ¢ are, respectively, the total head, static
pressure, and dynamic pressure of the undisturbed stream.
As indicated in reference 14, in a compressible stream,

H=p-+q(1-+n) (70)
where (1-+4) for air (y=1.4) is defined by the series

EEEEL ST AT TR @)

M being the Mach number of the stream. From these rela-
tions it is readily shown that

Si=014+n—PF, (72)

A curve of (1+7) versus M, as calculated from equation
(71), is given in figure 4.

In reference 6 a method is presented for the determination
of the pressure distribution around an airfoil in an incom-
pressible stream when the lift distribution along the chord
and the pressure distribution over the base profile are known.
The upper- and lower-surface pressures at any chordwise
station z are given in coefficient form by

B 1
(1—Pp+3P
—Pv—P_ . L 4
Po="=1="—a=p)
B . (73)
p,—=Pr—P =1__(1_PI)_ZP:|’
£ q 1—Py) )

where P, is the pressure coefficient on the base profile at z,
and P is the coefficient of 1ift per unit of chord at 2. By
following the basic reasoning of reference 6 and assuming
that the induced velocities at the surface of the airfoil are
small as compared with the velocity of the undisturbed
stream, it is readily shown that equations (73) may also be
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applied to the pressure distribution in & compressible stream.
In such application, the values of Py, P, P, and P must all
correspond, of course, to the same free-stream Mach number.

The measured pressure distribution is now readily cor-
rected for the effect of the tunnel walls. It is only necessary
to refer the measured pressure coefficients to the true instead
of the apparent dynamic pressure and remove the effect of
the lift distribution represented by equation (65). Strictly
speaking, correction should also be made for the pressure
gradient due to the wall-wake interference; however, in
practical tests such correction is small and may be neglected.
The detailed procedure is then as follows:

(1) The apparent upper- and lower-surface pressure
coefficients

and SL,=H_&_ L’

7

SU/=HZIPU’

are obtained from the experimental results tor the various
chordwise stations.

(2) These pressure coefficients are referred to the true
dynamic pressure by means of the equations
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(3) The quantities (1—Py*) and (1—P.*) are determined
in accordance with equation (72) as

I—PU*=SU*—77}

1— L*=SL*—’7 (75)

where 5 is determined by figure 4 for the true Mach number
as given by equation (33).
(4) The chordwise lift distribution in the tunnel is found
from
P*=p[,, _pvl
q

(5) The chordwise lift distribution in free air is deter-
mined from equation (65), which may be written

=SU"‘—SL"l (76)

P=P*——Zm; Pyo/ 77)

(M’)’

where P, is given by

P=2 sin 0= \[ (1——

This quantity, which is termed the “‘interference lift distri-
bution,” is seen to be elliptic in form. Values of P, at stand-
ard chordwise stations are given in table III.

(6) The quantity (1—P,), where P, is the base-profile
pressure coefficient in free air, is given by the equation

(I—Pf)=(1—P,*)=<3/1—PU*'2" w/l—P,,*>=

which is obtained by combining equations (73).

(7) The values of P and (1—P,) being known, the upper-
and lower-surface pressure coefficients Py and P, are deter-
mined from equations (73). If desired, the corresponding
coefficients Sy and Sz can be found from equation (72).

The corrected pressure distribution obtained by this
method corresponds to the corrected angle of attack as given
by equation (64a) or (64b) and to the corrected lift and
moment coefficients as given by equations (62) and (63).

It has been mentioned previously that the correction to
the angle of attack appearing in equations (64) does not
represent an actual rotation of the stream direction. This
fact is implicit in the derivation of the equations, but it can
also be demonstrated by simple considerations of force and
momentum. For this purpose it is sufficient to consider a
simple incompressible potential flow in the tunnel and ignore
the effect of the profile drag. Assume for the time being

(78)

(79)
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that, because of the interference between the airfoil and the
tunnel walls, the general direction of the stream at the air-
foil is inclined from its original direction parallel to the
tunnel walls, For potential flow the resultant force acting
on the airfoil must be at right angles to the local direction
of the stream. The airfoil thus would be acted upon under
the assumed conditions by & component of force parallel to
the center line of the tunnel and would in reaction exert an
equal and opposite force on the flow. Since the tunnel walls
cannot in a potential flow exert a force parallel to the center
line, this longitudinal force would have to be balanced by a
difference of pressure or momentum between two stations
in the tunnel, one upstream and one downstream from the
airfoil. If the stations are taken far enough from the air:
foil that its induced velocities are mnegligible, conditions
across the tunnel are uniform at each station. It then fol-
lows from considerations of continuity of the incompressible
flow in the tunnel that the conditions at the two stations are
identical, and no difference of pressure or momentum is
possible. Thus the original assumption of a general rota-
tion of the stream direction at the position of the airfoil is
untenable. This coneclusion is not changed by the effects of
fluid compressibility. Furthermore, the fact that the in-
troduction of the profile drag and the accompanying wake
causes o pressure difference between the two stations like
wise does not alter the result, as the wake effects are con-
sidered in the theory to be superposed on the potential-flow
field. Thus, the angle correction appearing in equations
(64) must be due to some cause other than a general inclina-
tion of the stream. As previously pointed out, it is actually
due to an effective change in the curvature of the stream at
the position of the airfoil and is a direct consequence of the
requirement that the airfoil in this stream shall have the
same cotangent component of lift distribution as does the
airfoil in free air. These considerations are important in
the proper interpretation of drag measurements from a two-
dimensional-flow tunnel.

In the development of the correction to the measured drag
coefficient, it was assumed that the increment AP in chord-
wise lift distribution between the tunnel and free air has
only a negligible effect upon the profile drag. A better idea
of the nature of the effect can be had by further examination
of the difference between the two cases. It follows from
equations (65) that, if the angles of attack in the tunnel and
in free air are related as required by equation (54) or (64),
the transposition of a given airfoil from free air to the tunnel
is equivalent to increasing the coefficient A, for the airfoil
in free air by an amount

a

AA1=A1/ —A1= 1—A2 (2Ao' +A1')

which can be written to the first order as

1 ¢
A=r I

As can be seen from equation (46), this can be accomplished
by maintaining the angle of attack unaltered in free air and

changing the ordinate of the mean-camber line at every
point by an amount Ay, such that

d(Ay) 1
% =;‘/—1__i__‘w.2 C; COS [/} (80)

The value of Ay, as a fraction of the chord is then

s[04 (D)ro

which after substitution from equations (44) and (80) can
be integrated to obtain

Ay, 1 o

p B 1= ¢; cos 20--C

The constant of integration C is determined by the condition
that AyJfe=0 at =0 and #=x. The equation for the
change in the camber line then becomes finally

e (-] e

This is the equation of a parabola with vertex at the mid-
chord point and has the same form as the equation for the
camber line of an NACA conventional airfoil with maximum
camber at the midchord point (reference 15). The maximum
change in camber is

Ay, 1 o

(%)= Vi=I2" - (2
Thus, if the angles of attack of the airfoil in the tunnel and
free air are adjusted as required by equations (64), the wall
interference in the tunnel has the same effect upon the chord-
wise lift distribution as would an increase in camber in free
As a possible instance of a test for the determination of the
drag of an airfoil of large chord at a low Mach number and
low lift coefficient, consider the case of an airfoil in a tunnel
providing a chord-height ratio of 0.5. The value of ¢ is
then 0.051. Assume that the angle of attack «’in the tunnel
is adjusted as required by equations (64) to correspond to
an angle a giving a lift coefficient ¢; of 0.3 in free air. As-
suming that the Mach number is sufficiently low that the
effect of compressibility may be neglected in computing the
tunnel-wall corrections, the change of maximum camber re-
quired in free air to duplicate the effect of the tunnel walls is
given by equation (82) as

(%Q)w:%, (0.051)(0.3)=0.0012

An estimate based upon experimental data has been made of
the effect upon the profile drag of & change in camber of
this magnitude for an NACA conventional airfoil of moderate
camber and 15-percent thickness with maximum camber at
the midchord point. The result indicates that neglecting
the effect upon the profile drag of the change in lift distribu-
tion caused by the tunnel walls leads in this case to an error
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in the final corrected drag coefficient of less than 0.0001.
This is within the usual limits of experimental accuracy.
The correction terms included in equation (67) amount in
this instance to approximately 0.0004. If the chord-height
ratio were increased to 1.0, the error in the drag coefficient
would be increased to 0.0004, which is well outside the limits
of experimental accuracy. This indicates the desirability
of limiting the chord-height ratio if accurate measurements
of the profile drag are desired, even at low values of the Lift
coefficient and Mach number. At higher values of the lift
coefficient or Mach number the permissible chord-height
ratio must be reduced correspondingly.

The foregoing comparison is based upon the specific case
of an airfoil with maximum camber originally at the mid-
chord point and is not necessarily applicable to other types
of airfoils. For families of airfoils which have & smaller
variation of drag with camber than do the NACA conven-
tional sections, the error introduced by neglecting the effect
of the change in lift distribution is correspondingly less.
In any event, satisfactory accuracy can be obtained in the
measurement of drag at low lift coefficients and Mach num-
bers by keeping the chord-height ratio within a suitable
limit—say 0.7. A possible exception is an airfoil having an
essentially flat pressure distribution in the region of tran-
sition from laminar to furbulent flow in the boundary layer.
In such a case the changes in pressure gradient may shift
the point of transition and noticeably alter the profile drag;
however, for any such sensitive airfoil, alterations from this
source are no more serious than similar changes which may
accompany the small variations in pressure distribution
caused in any practical application by irregularities in
construction.

Some measure of the effect of the increment AP in chord-
wise lift distribution upon measurements of airfoil charac-
teristics at high Mach numbers can be obtained by calcu-
lating the change in critical Mach number caused by this
increment. Such a calculation has been made for an airfoil
with minimum pressure originally at the midchord point.
Since the increment AP is a maximum at midchord, this
represents the worst possible case as regards the change in
critical Mach number. For a chord-height ratio of 0.25,
which is considerably larger than that ordinarily employed
in tests at high Mach numbers, the critical Mach number
was found to be reduced by approximately 0.001 at a lift
coefficient of 0.3. A change of this magnitude is insignifi-
cant. It may be expected that the accompanying change
in the aerodynamic coefficients in the vicinity of the critical
Mach number will be correspondingly small.

THE PHENOMENON OF CHOKING

Consider the compressible adiabatic flow of a fluid in an
elementary stream tube of varying area .4, as shown in
figure 5(a). Continuity of flow requires that the product
0 VA, be constant, where p;, V;, and A, are the local values
of density, velocity, and area, respectively, at any station

along the tube. In consequence, the logarithmic derivative
must vanish; that is,

dpr, AV, ddi_

o +‘T7;+ 4, =0 (83)

REPORT NO. 782—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

A. 4
Py - =

(b)
FIGURE 5.—Velocity distribution {n an elementary stream tube.

Bernoulli’s equation for compressible flow requires that
%71'=—V, v, (84)
1

Defining V,, as the local

where p; is the local pressure. e

velocity of sound, then

aps__
dPl

80 equation (84) becomes, after substituting the value of
dp; in that equation,

dpz V: dV; dV;
—vy =My

where M, is the local Mach number.
Substituting this relation into equation (83) gives
d4,

(a~np =%

(85)

From this well-known relation it is seen that at subsonic
speeds the usual behavior associated with incompressible
flow is obtained; namely, that as the area increases the ve-
locity decreases. At supersonic speeds, however, the be-
havior is reversed in that as the area increases the velocity
increases. When the local Mach number is unity it is seen
that dA=0; that is, if the velocity of sound is attained in the
tube it can only be attained where the area has 1ts minimum
value.

When the local velocity of sound is attained at the mini-
mum ares section, the local Mach number at any other sec-
tion, determined by the ratio of the area at that section to
the minimum area, may be less or, in some cases, greater
than unity depending upon the conditions promoting the
flow in the tube. The nature of such flows can be studied by
considering the change in the character of flow in the stream
tube of figure 5(a) as the downstream pressure p, is de-
creased with respect to the upstream pressure p,. If
P;—p; 18 small so that completely subsonic flow is maintained
in the tube, the nature of the velocity variation along the
tube is that usually associated with incompressible flow as
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seen in curve I of figure 5(b). When p,—p; is increased so
that sonic speed is just reached in the minimum area section.,
the variation of velocity along the tube becomes that shown
in curve IT. Any further decrease of the pressure p; cannot
alter the flow upstream of the minimum area, since the velo-
city at the minimum section cannot exceed the velocity of
sound. The only effect of decreasing the downstream pres-
sure is to promote a supersonic flow region downstream of the
minimum. area, as shown by curve III of figure 5(b). This
region is terminated by an abrupt return, through a com-
pression shock wave, to subsonic flow. The position of this
terminal shock wave must be such as to bring about the
necessary conversion of kinetic to thermal energy that is
required to promote the downstream pressure p,. For pres-
ent purposes, the most important point concerning the flow
as described is that when the velocity of sound is attained
at the minimum area section, no further increase in the
flow rate can be made regardless of the extent of the super-
gonic flow region downstream of this section. When this
maximum flow rate has been reached, the stream tube is
said to be ‘“‘choked.”

What has been said concerning the choking of a single
stream tube applies to the complete system of stream tubes
past an airfoil mounted in a two-dimensional-flow tunnel,
as shown in figure 6. That is to say, when the velocity of

Al I’B
]

M. JTL
_Mer [ h

F1aURE 6,—Lines of sonic speed at the position of the alrfoil after choking

the undisturbed flow far upstream in the tunnel reaches a
certain value, sonic velocity is attained at the point of mini-
mum area of each elementary stream tube between the airfoil
and the upper wall of the tunnel. It is important to note
that the locus of the points of minimum area of the separate
stream tubes does not necessarily coincide with the shortest
line between the airfoil and the upper wall. This is illus-
trated in figure 6, where the line A represents the shortest
distance between the airfoil and the wall. If the conditions
of flow were uniform across the stream at each chordwise
station, the flow between the airfoil and the wall would be
the same as in a single elementary stream tube, and sonic
velocity would necessarily be attained along line A. In the
actual case, however, the flow is two-dimensional, and sonic
velocity is attained along some line, such as line B, not coin-
cident with A. A similar situation exists in the space
between the airfoil and the lower wall of the tunnel, where
the sonic velocity is attained along some line D. As before,
this line does not necessarily coincide with line C, the short-
est line which can be drawn from the lower surface of the
airfoil to the lower wall. (In order to avoid an apparent
contradiction with the requirements of continuity, it must
be kept in mind that the velocity vector is not, in general,
perpendicular to either lines A and C or B and D.) Sonic

speed is generally not attained coincidentally along lines B
and D. Once it is attained along both these lines, however,
the rate of flow past the airfoil in the tunnel can undergo no
further increase. The Mach number of the flow ahead of
the airfoil then has its maximum attainable value. This
value is described as the “apparent choking Mach number.”

In practice, the lines of sonic speed lie very dlose to the
lines defining the shortest distance between the airfoil and
the tunnel walls. For purposes of analysis, it will be as-
sumed that they are coincident, that is, that lines B and D
coincide, respectively, with lines A and C. TUnder these
conditions, the calculated rate of flow in the tunnel (which
must in any event be equal to the rate of flow across lines
A and C) will be somewhat greater than that which actually
exists when the lines B and D have their true positions.
The assumption of unidimensional flow will thus lead to a
computed choking Mach number, which is slightly greater
than the theoretically correct value.

On the basis of the foregoing assumption a relationship
between the model size and the choking Mach number can
be obtained from elementary considerations. The velocity
V"’ and density p’ of the flow far forward of the model, where
the cross-sectional area is 4’, are constant across the stream.
The velocity V,, and density pn, across the sonic-speed lines
B and D of ﬁgure 6, where the area has the minimum value
A,, are again constant across the stream. The velocity
V. is the local sonic speed Ve, so that the equation of
continuity becomes

P’ VA’ =PchmAm

Assuming adiabatic relations, the density and velocity
terms can be related to the Mach number far upstream,
which is now the apparent choking Mach number. The end
result is that the ratio of the area of the undisturbed stream
to the minimum flow aree can be expressed - in terms of the
apparent choking Mach number 14/, as

’ ‘r+1
E=p- A er—nlTs s0)

The area ratio is clearly

A h
4. h—1
where h is the tunnel height and £, the projected thickness
of the airfoil normal to the flow direction. For reasons
which will be evident later, the projected thickness in this
relation will be replaced by an “‘effective’ thickness ,.
Taking the value for v for air as 1.4, equation (86)
becomes
Ml

rl“[l RUASY)

In figure 7, the ratio f,/h is plotted as a function of the
apparent choking Mach number. The region above the
curve represents an impossible state of flow. As a matter
of interest the results are shown for the supersonic- as well
as the subsonic-flow regime, although for the purpose of this

(87)
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F1GURE 7.— Choking Mach number as a function of effective-thickness to tumnel-height ratlo.

report only the subsonic choking Mach numbers will be
considered. . -

In writing equation (87), the projected thickness was
replaced by an effective thickness. If choking occurred as
was assumed in the preceding analysis, then the effective
thickness determining choking would be, of course, the pro-
jected thickness. In any real case, although the effective
thickness may never be less than the projected thickness, it
may be greater for two reasons. First, if the angle of attack
is sufficiently large in absolute value, one of the lines B or
D may move downstream of the trailing edge because of the
continued contraction aft of the airfoil of the portion of the
stream passing that line. Second, since on any aerody-
namic body there exists, because of the action of viscosity,
a boundary layer wherein the velocity must be reduced
below the velocity in the otherwise unaffected flow field,
it follows that the velocity of sound cannot be attained at
those points close to the airfoil surface on the lines B and
D of figure 6.

To estimate the choking Mach number in any practical
case, it is necessary to assume that the effective thickmess
is equal to the projected thickness of the airfoil. Because
of the possible contraction of part of the stream aft of the
airfoil, as well as of the assumption that unidimensional
flow exists as previously described, this procedure will lead

to a computed choking Mach number which is greater than
the theoretically correct values for an ideal, incompressible
fluid. Further, the influence of the boundary layer will
cause the actual choking Mach number to be even less than
this theoretically correct value. Thus the use of the pro-
jected thickness in the computation may be expected to lead
to an overestimation of the choking Mach number.

The effect of the boundary layer in this regard may best
be illustrated by the case of a flat plate set at zero angle of
attack in a two-dimensional-flow wind tunnel. Since the
projected thickness is zero, the previously developed theory
would indicate that no choking would occurr in this case.
Actually, because of the fact that the plate has a boundary
layer and an accompanying wake, choking does occur, as is
shown in the following discussion.

It was seen in the section on wake effect, wherein the
effect of confining the wake of a body experiencing drag was
considered, that when the influence of the wake spreads to
the walls so that a uniform velocity field again exists, the
temperature at this downstream position is related to the
temperature upstream of the model by equation (13). Using
equation (9), the ratio of the corresponding velocities may be
seen to be

pr 1Hv0r2[1-%(3)]
LA CE3 7

——

Vi—anm @ % (p)z+roer[2-% ()
DALY = (88)

The velocity ratio is imaginary when the sign of the group
of terms under the radical is negative. The functional
relationship beween the choked Mach number and the drag-
density factor rc,/, found by equating the terms under the
radical to zero and solving the resulting equation, is thus
determined as

where, as before, T=i' (%) Setting y=1.4 for air gives

e 6

,_1F1a(M )Y,
e =T 8(M 2)*

A graph of this function is shown on figure 8. The effect of
drag on choking for supersonic as well as subsonic wind
tunnels is shown as a matter of interest.

The manner in which drag promotes choking may be com-
prehended by examining the variations of the ratios V'//V’
and T”//T” in equations (88) and (13) as the value of 7c,’ is
increased. In the case of the subsonic wind tunnel, the
effect of increasing rc,” is to increase V’//V’. On the other
hand, 7”//T’ and hence V,’/V,’ are reduced. Consequently
M"’[M’ is increased. In the case of the supersonic wind
tunnel the effect of increasing rc,’ is to decrease V*//V” and to
increase T”//T” and hence V///V,’. Consequently, M’/ /M’
is reduced in this case. In both cases choking occurs when
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the value of r¢y/ is such as to make the downstream Mach
number /'’ unity.

There is one definite limitation of the previous analysis in
that it was assumed that the effective tunnel area remained
constant at least until the wake had spread to the walls so
that uniform flow conditions were obtained across the stream.
Such a condition does not prevail in any conventional wind
tunnel, nevertheless the results are useful in providing ap-
proximate values for the effect of drag as it determines
choking. Tor example, a flat plate having an apparent drag
coefficient of 0.007, if the chord-height ratio were 0.5,
would choke a subsonic wind tunnel at a Mach number of
0.95 if choking occurred as assumed in the analysis. The
serious influence of drag on choking for airfoils for which the
drag coefficient may be-many times this value is evident.

To summarize, it has been shown that choking will occur
in a wind tunnel as a result of the confinement of the flow
caused by the presence of the model and its wake. In the
case of airfoils of normal thickness, choking will usually
be determined by the effective dimensions of the body—that
is, by the actual dimensions modified for the effects of
boundary layer and stream contraction aft of the airfoil as
previously described. Properly, the boundary-layer effect
is a drag influence, but since its contribution is usually small
it is most convenient to classify such confinement effects
along with those due to the physical airfoil dimensions. In

the case of very thin airfoils, at small angles of attack,
choking will usually result from the confining effect of the
wake rather than the effect of the airfoil thickness.

Once the choking Mach number is reached, no further in-
crease in tunnel power can affect the apparent Mach number.
Such an increase will only serve to extend the supersonic flow
region downstream of the lines of sonic speed. The forces
experienced by the airfoil at choking thus vary depending
on the power input to the wind tunnel.

As g final consideration it should be noted that the flow in
the tunnel at choking does not correspond to any real flow
over an airfoil in free air. Since the choking Mach number
approaches unity as the tunnel height A becomes infinite,
flow in the tunnel at choking, if it is to correspond to any flow
in free air, must correspond to the flow that would occur
around an airfoil in a free stream moving at the velocity
of sound. It can be demonstrated, however, that such
a correspondence ig8 impossible. Experimental evidence
indicates that the flow conditions existing in the tunnel at
choking are essentially steady state. That the flow about
an airfoil in a free stream having the velocity of sound
cannot be a steady-state flow can be readily shown. For
instance, it was demonstrated previously that in any stream
tube the velocity of sound, if it is attained at all, must be
attained at the minimum area section. That is to say, the
rate of flow per unit area is & maximum where the velocity is
the velocity of sound. Now, presuppose a steady-state
flow in the stream tubes in the vicinity of an airfoil in free air
when the stream velocity is sonic speed. If the velocity
either increases or decreases as the flow passes the airfoil, the
stream tubes must expand. This is clearly impossible, since
the disturbance to the flow would then increase continuously
as the distance from the airfoil increases. 'On the other
hand, if the velocity remains the velocity of sound in each
stream tube, the streamlines will then have the same shape
at all distances from the airfoil. Also, the pressure will
remain constant throughout the entire flow field. This is,
of course, impossible, since pressure differences are necessary
to promote the required changes in the direction of flow
past the airfoil. A steady-state flow similar to that observed
in the tunnel at choking therefore cannot exist in free air
at a free-stream Mach number of unity. Thus at the choking
Mach number, the flow at the airfoil in the tunnel cannot
correspond to any flow in free air. It follows that, at choking,
the influence of the tunnel walls cannot be corrected for.
Further, in the range of Mach numbers close to choking,
where the flow is influenced to any extent by the incipient
choking restriction, any correction for wall interference must
be of doubtful validity.

That the flow at or close to choking cannot be corrected
for the interference effects of the tunnel walls may be rea-
soned from another point of view. The assumption that it is
permissible to correct wind-tunnel test data for the influence
of the walls is justified only when the influence on the flow
near the model is of such & uniform nature as not to alter
the general -character of the flow materially from some
corresponding flow in free air. For instance, a velocity
correction for wall interference may be applied with con-
fidence only if the velocity increment resulting from such
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interference is constant or nearly constant over that portion
of the flow field wherein the influence of the model on the
flow is important. Viewed in this light, it is clear that at or
close to choking no correction can properly be applied, since
an important influence of the model on the flow is felt over
a range extending close or up to the walls, within which
range the influence of the walls on the flow is not at all
uniform.

It is thus clear that the equations which have been derived
for correcting the test data obtained in a subsonic two-
dimensional-flow wind tunnel for the effects of wall inter-
ference, cannot apply at the choking Mach number nor for
a range of Mach numbers below the choking value. More-
over, when the model is not symmetrically disposed, the flow
will, in general, attain sonic velocity across the stream on one
side of the airfoil before it does on the other. In such cases,
it is to be expected that the range of Mach numbers below
choking for which the corrections are invalid is extended
over that which would occur with a more nearly symmetrical
flow pattern.

DISCUSSION

There is, at present, only a very limited amount of experi-
mental data available which can be considered satisfactory
for determining the accuracy of the theoretical interference
corrections derived in this report. Moreover, none of the
available data were obtained at sufficiently high Mach
numbers to permit an evaluation of the accuracy of the
theory with regard to the effect of compressibility.

In figure 9 are shown the experimentally determined
variations of lift coefficient with angle of attack for several
NACA 0012 airfoils having different chord-height ratios.
The date for those models for which the chord-height ratios
are 0.25, 0.5, and 0.8 were obtained from tests in the 7-by
10-foot wind tunnel at the Ames Aeronautical Laboratory.
These models were of 6-foot span mounted across the 7-foot
dimension of the test section; 6-inch-span dummy ends were
used in an attempt to obtain two-dimensional flow. A gap
of about ¥, inch occurred between the test panel which was
connected to the balance frame, and the dummy ends, which
were fastened to the tunnel walls. The lift was determined
both from force tests and by integration of chordwise pres-
sure distributions at & section close to midspan. The data
presented here are those obtained from the pressure distri-
butions. The data for the model for which the chord-beight
ratio is 1.0 were obtained from tests in the low-turbulence
wind tunnel of the Langley Memorial Aeronautical Labora-
tory. This 3-foot-span model was fastened directly to the
side walls of the tunnel such that no air gap existed, and the
ift was d etermined from messurements of the reaction on
the roof and floor of the test section. The test results for
the various models are shown, uncorrected for tunnel-wall
interference, in figure 9(a). In figure 9(b), are shown the
same data corrected for wall interference by means of equa-
tions (62) and (64b). For all the models, the correction
term depending upon ¢, is negligibly small. The test
Reynolds numbers range from 2,000,000 to 6,000,000. It is
seen that the corrected data obtained with the models for
which (c/k) equals 0.25, 0.5, and 1.0 agree well with one
another and with the section lift characteristics as obtained
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from tests in the NACA variable-density wind tunnel (refer- 20 — — T
ence 15). The data obtained with the model for which (¢/R) X Gh=100; R'=456 x 109
equals 0.8, when corrected, indicate a lower lift-curve slope — X cc?,’:;'no’;ﬁ;‘ﬁ;’fe,’.‘,éo,fcs,
than do the other data. This is thought to be due to the 16 R=5 X 10% (reference /6) ,
offect of air leakage through the gaps at the ends of the test ¥
panel, the influence of which may be expected to become VA
more pronounced as the chord of the airfoil is increased
relative to the span. +2 Y
In this regard, unreported tests in the Langley low- / A
turbulence wind tunnel have shown that the presence of any /] L7
gap through which leakage can occur will influence the aero- -6 X —
dynamic characteristics to a surprisingly marked extent. /
This fact was also demonstrated by the Ames Laboratory
tests on the NACA 0012 airfoils. A comparison of the lift
characteristics obtained from balance measurements with
those derived by integration of the pressure distributions,
which are those given in figure 9, showed the lift-curve slopes
for the former to be definitely lower than those for the latter.
‘This indicates that the lift near the center of the test panel -
exceeded that at the sections near the gaps; that is, that the P //
flow was definitely not two-dimensional. : 7

In figure 10(2) is shown the experimental variation of P
lift coefficient with angle of attack for an NACA 23012 for A /#
which (¢/h) equals 1.0. These date were obtained in the -8
Langley low-turbulence wind tunnel at test Reynolds num-
bers of 4,560,000 and 6,450,000. The same data corrected /j: @
for tunnel-wall interference by means of equations (62) and Wy
(64b) are shown in figure 10(b), together with section lift 5 -4 Angz- of ottoese o 2
characteristics as obtained in the variable-density wind tun- (8) Unourrected for tunnel-wall fnterferance.
nel at an effective Reynolds number of 5,000,000 (reference 20 — l
16). The corrected data are seen to be in excellent agree- ) c/h-lOO-R-I478xIO’
ment with the results from the variable-density tunnel. — j_gg‘&fiﬁf&fg‘mg;c S

In figure 11(2) is shown the variation of quarter-chord- 16 R=5 x 10¢ (reference /6]
moment coefficient with lift coefficient for the NACA 0012
airfoils as obtained from the 7- by 10-foot wind-tunnel tests
previously described. In figure 11(b) are shown the same
data as corrected for the interference of the tunnel walls by +2 7
means of equations (62) and (63). The section moment
characteristics for this airfoil as obtained from tests in the e
variable-density wind tunnel (reference 15) are also shown
for comparison. It is seen that the corrected data are in
fair agreement with the data from the variable-density wind
tunnel, except for the model for which (¢/h) equals 0.8.
It is believed that this disagreement is again due to the effects
of air leakage through the gaps between the test panel and
the dummy ends, and not to any shortcoming in the theory.

In figures 12 and 13, the uncorrected and corrected profile-
drag coefficients for six symmetrical bodies at zero angle of
attack are plotted as a function of the experimental chord- /
height ratio. The uncorrected experimental values ¢,
shown by the crosses, are taken from results reported by s
Fage in reference 17. The theoretically corrected wvalues
¢4, indicated by the circled points, were computed from -8~
equation (67) for M’=0. The extrapolated free-air value
given in reference 17 for each of the bodies is indicated by
a horizontal dashed line. It is seen that the corrected —12 (®)
points are in good agreement with the extrapolated free-air -8 -4 n Z_ of o ﬁa:k o 8 2
values. In view of the assumptions made in the theoretical ®) ngrmﬂ_ wall interference.
doevelopment, the relative accuracy of the corrections at Fraure 10—Lift characteristics for NAGA 23012 airfoil section.
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large chord-height ratios and large drag coefficients is re-
markable, particularly in the case of the circular cylinder.
Glauert (reference 2, pp. 56-57) suggests for the drag
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correction in an incompressible fluid a formula which may bo
written in the notation of this paper as

comcsfi—200—2 (1) (3)]

where (t/c) is the thickness ratio of the airfoil. In this
equation, as in equation (67), the first correction term appears
as a result of the interference between the airfoil thickness
and the tunnel walls and is identical with the corresponding
term in equation (67) for A’=0. The remaining term is an
empirical correction for the effect of the wake. The empiri-
cal factor « is given by Glauert as a function of (c/t), the
values being derived by fitting equation (91) to the experi-
mental data of reference 17. This wake term differs funda-
mentally from the wake correction of equation (67) in that
the correction in this case consists of a single term which
varies as (c/h); whereas the correction in equation (67) com-
prises two terms, one of which varies as (¢/k) and one of
which varies as (¢/k)?. Equation (67) gives corrected results
which agree as closely with the free-air values as do the
results obtained with equation (91). It has the advantage
that it is generally applicable to all airfoils and does not
depend upon the experimental results of tests of specific
sections.

In summary, the corrected data of figures 9 to 13 indicate,
for the most part, that when the flow is maintained strictly
two-dimensional, the theoretical corvections for the tunnel-
wall interference are, for low Mach numbers at least, accurate
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F1GURE 12.—Profile drag for three symmetrical Joukowsk! airfolls at zero anglo of attack
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up to chord-height ratios of unity. The high accuracy
observed at the larger values of (c/h) must, however, be
regarded as fortuitous since the theoretical analysis is predi-
cated upon the assumption that the chord-height ratio is
small enough that all points of the airfoil may be assumed to
lie on the center line of the tunnel and that powers of (c/k)
higher than the sccond may be neglected. It is thought
that, at low Mach numbers, chord-height ratios as high as
0.7 are permissible if the tests are conducted only for the
purpose of obtaining drag characteristics at low values of the
lift coefficient. However, care must be exercised in ascer-
taining the maximum chord-height ratio permissible in any
particular case to insare that the interference lift represented
by equation (65) is not of such nature and magnitude as to
affect the general character of the flow in the boundary lay-
er along the surface of the model. In tests conducted to
determine the aerodynamic characteristics of & model up to
and beyond the maximum lift, it is believed that the chord-
height ratios must be kept to much lower values. At low
Mach numbers, chord-height ratios up to 0.4 are probably
permissible; however, there are no experimental data avail-
able at present to support this contention.

As noted previously, no experimental data could be found
which would permit an evaluation of the accuracy of the
calculated effects of compressibility upon the wall-inter-
ference corrections. Most certainly, as the test Mach
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numbers increase, the permissible chord-height ratios must
decrease. It is considered that as long as the velocities
induced at the position of the airfoil by the wall interference
are small as compared with the velocity of the undisturbed
stream, the corrections developed in this paper are applicable
even though the stream Mach number exceeds the critical
for the airfoil under test. However, as previously noted, at
and for a range of Mach numbers below choking, the inter-
ference velocities are no longer small and the corrections are
invalid. The extent of this range is unknown. Itshould be
emphasized that the flow pattern at and in the immediate
vicinity of choking does not correspond to any flow pattern
obtainable with the airfoil in free air; so the test results in
this range cannot be corrected by any method.

For zero Mach number (i. e., for an incompressible fluid),
the results of the present paper can be compared with
Goldstein’s particular corrections for airfoils having small
thickness and camber and small force coefficients. For an
airfoil on the center line of the tunnel, equations (138), (139),
(140), (143), and (144) of reference 3, together with the
expressions of appendix 5 of reference 4, give the following
equations for the velocity, angle of attack, and aerodynamic
coefficients in an incompressible fluid:

V=V"{1++2C,—C)} )

s foriiee,)

Cl=01,{1‘—0'} (92)
ca=¢' {1—30(2C—Cy) }
Cm =Cm

Here, the moment coefficients are for moments about the

midchord, and (c,. ;) is the moment coefficient at zero lift
0

“in free air. The quantities C; and C; are determined by

the shape of the base profile according to the equations

_2(~y, dg
00_71’ 0o C sin0

(93)
02=é Y108 20d0
wJo ¢ sIn@
In deriving these equations, the notation of references 3 and
4 has been changed to agree with that of the present paper,
and the lift-curve slope in free air assumed to have its
theoretical value of 2.

The corresponding corrections as obtained by setting
M’=0 in equations (26), (62), (63), (64a), and (67) of the
present paper are

V=V"{1+Ac+7cs’}

a=a’+2:_ c,’—l—4c,,,,_’}
4

cr=¢/ {1—c—2Ac—27¢,'} (94)

Cd——“cd’{ 1—3Aa'—2-rcd'}

Cony =Cm, [1 -—2A0'—2Tc¢'}
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The last of these equations is obtained from equations (62)
¥
and (63) by means of the relation c”"£=c"'i+7i e

The correction terms involving ¢ in the two equations for
the velocity are equivalent, except that the factor A, which
appesars in the equation of the present paper, is replaced in
Goldstein’s equation by the quantity (2C,— ;). Equations
(93) give

(20,— 02)_4f y:1—cos 26

=§f'?‘i'sinede
gin 0 wJo €

which becomes, after substitution from equation (44),

-2 [/(2)¢(3)- 2

where A is the cross-sectional area of the airfoil. The
factor A can be expressed in analogous form by means of

(95)

equation (19.05) of reference 2. Since %z‘.\c2 is equivalent to
the quantity M? in reference 2, this equation becomes

8 A—I—A

T

A= (96)

where A, is the so-called “virtual area’” of the base profile.
The virtual ares of a given body in two-dimensional flow is
defined as the area occupied by a fictitious quantity of
fluid having a uniform density p and velocity V and possessing
a kinetic energy equal to the total kinetic energy of the field
of flow about the same body when it is moving forward with
a steady velocity V through an unlimited expanse of incom-
pressible fluid of density p. The magnitude of the virtual
area depends upon the shape as well as upon the size of the

body. Itisseen that the first correction term in the velocity

equation of the present paper (which for the incompressible
case is simply the result originally derived by Lock) has a
somewhat higher value than the correction term of the
Goldstein equation. The Goldstein equation contains no
term corresponding to the term 7¢c,’ in the equation of the
present paper Goldstein includes this correction, however,
in the equation for the determination of the stream velocity
from measurements made at the tunnel wall upstream of
the model.

The Goldstein equation for the correction of the measured
drag coefficient likewise differs from that of the present
paper by the replacement of the factor A by the quantity
(2C,— () and by the omission of the term in 7¢ /. If
Goldstein’s equation is applied to the experimental results
of Fage given in figures 12 and 13, it is found that there
is little to choose between the corrected results given by the
two equations, except in the case of the circular cylinder
where the results obtained from the equation of the present
paper are better.

The corrections to the lift and moment coefficients as
derived by Goldstein differ markedly from those of the pres-
ent paper in that Goldstein’s equations contain no terms
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corresponding to the 2A¢ and 2rcs” terms which appear in
the equations of this paper. As has been noted previously,
the 27¢,’ term is accounted for indirectly in the determination
of the apparent stream velocity. A term of the type 2A¢
is necessary, however, to correct the measured coefficients
for the increase in dynamic pressure caused by the inter-
ference between the walls and the airfoil thickness.

Since the moment coefficient at zero lift is the same about
any axis and since the change from the free air to the meas-
ured moment coefficient in the correction to the angle of
attack will introduce only differences of the second order
in o, Goldstein’s equation for the corrected angle of attack
may be written with sufficient accuracy as

a=a’+2lﬂ_ l:c;'+4<c,,,‘g’)o:|

In this equation, the part of the correction due to the moment
on the airfoil is constant, its value depending only upon
¢n,’ for zero lift; whereas in the corresponding equation of

£
the present paper the part of the correction due to the mo-
ment varies with the angle of attack. This difference is of
small consequence in most applications; however, the equa-
tion of the present paper, which includes the actual variation
in moment, may be somewhat the more accurate, especially
at high angles of attack.

The compressibility factors which appear in the complete
equations of the present paper are comparable with the
results of Goldstein and Young (reference 5). The equation
for drag as given in reference 5, when expressed in coefficient
form and altered to agree with the notation of the present
paper, can be written

u—@wwﬁgg}@”

This equation is obtained by modifying equation (91) to
include the effect of compressibility. Comparison of the
compressibility modifications of equation (97) with those of
the corresponding terms of equation (67) reveals that the
compressibility factors appearing in the first correction terms
differ by the inclusion of & term —(34’)? in the numerator in
equation (67). This difference arises from a failure to note
in the development of equation (97) that in a compressible
fluid the dynamic pressure in the tunnel is affected by the
change in density which accompanies the change in axial
velocity. The compressibility factor of the second (or
wake-correction) term of equation (97) is not comparable
with the compressibility factors of the wake-correction terms
of equation (67) because of the fundamental difference in
the nature of the corrections already pointed out in the
discussion of equation (91). The compressibility factors in
the equations for lift, moment, and angle of attack in refor-
ence 5 agree with those appearing in the corresponding
terms of the equations of the present paper. It should be
noted, however, that the lift and moment equations of
reference 5 include no corrections for the difference between
the true and apparent dynamic pressures in the tunnel.

, 2
ccmed {1~ g=gipymie-
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CONCLUSIONS

Airfoil data obtained from tests in a two-dimensional-flow
wind tunnel can be corrected to free-air conditions by means
of the following equations:

V=V’[1+[1—(1114')2]m“+1?0é‘(4ﬂf§; -y } (26)

g=' 1472 (ﬁfﬁ;m pog 2= (M’l)’][%ﬂ—;gf(M'y] /] o

Bt 1+ =00 04 =0T GO 04000,

(32)

a=2a 14 EGZ0 o IHOXALALLIAON )

(33)

a=a’ z—ﬂ%‘?l c"+4cﬂ%'}(degrees) (64b)
=

2— (MII)Z][%_I-'(; f:(M’)z ] )

— , 1 2 (M/)2
Cng=tng |1 TG A0

[2— (37)*][14-0.4(AL")"]

rca’}+cz’ 4[1_‘2 oL (63)

1— (M)
/[ _3—0.6 (M")* [2— (M’)’][1+04(M’)”]
comed |\ ~[= rpyiado— —@0)? o
(67)
where
1/¢
-1
73/ e\2
MT (Z

and A is o dimensionless factor the value of which depends
upon the shape of the base profile of the airfoil. (See equa-
tion (3) and table I.) The remaining symbols are defined in
appendix B. Numerical values of the functions of A4’ which
appear in these equations are given in table II. Experi-
mental pressure distributions also can be corrected by a
method outlined in the text.

The corrections derived are thought to be applicable up
to & Mach number near the choking value, which is the
maximum Mach number attainable in the wind tunnel. The
choking Mach number is shown to be the stream Mach
number at which a Mach number of unity is attained locally
across the tunnel either (1) at the position of the airfoil be-
cause of the reduction of the available flow area occasioned
by the presence of the airfoil, or (2) downstream of the airfoil
a8 a result of the influence of the airfoil drag upon the flow
in the wake. The choking Mach number can be estimated
by means of equations presented in the report.

Insofar as can be ascertained from the small amount of
experimental data available, the correction equations are
applicable at low Mach numbers for values of the chord-
height ratio (c/h) as high as 0.7 if the tests are conducted for
the purpose of obtaining drag characteristics at low values
of the lift coefficient. In tests conducted to determine the
aerodynamic characteristics of an airfoil up to and beyond
the maximum lift, it is thought that a chord-height ratio of
0.4 is permissible at low Mach numbers, although there is no
experimental evidence to support this contention at present.
At high Mach numbers the permissible chord-height ratios
must logically be expected to decrease. In particular, if
the critical speed is exceeded, it is probable that only very
small values of (¢/h) are permissible. There are ab this time
no experimental data available on this aspect of the problem.

Comparison of the results of the present paper with those
of references 3, 4, and 5 reveals certain differences as noted
in the section Discussion.

AMES AERRONAUTICAL LLABORATORY,
NaTioNaL ADviSORY COMMITTEE FOR AERONAUTICS,
Morrert FieLp, CALIF.

APPENDIX A

THE VELOCITY FIELD FOR A SOURCE AND FOR A SYM-
METRICAL AIRFOIL IN A COMPRESSIBLE STREAM

The velocity induced at a point in & compressible fluid
stream by a single fluid source can be found to a first degree
of approximation by a modification of the method used by
Glauert (reference 7) for the consideration of a vortex in a
compressible fluid. To this end, a system of polar coordi-
nates is introduced. The origin is located at the source and
the polar axis extends downstream parallel to the velocity V'
of the undisturbed stream. (See fig. 14.) The resultant
velocity U at any point L(r,¢) is defined by the velocity
components w and n parallel and normal, respectively, to the

radius vector.
n

L(7, ¢)

4 r
$

FIGURE 14.—Velocity Induced by a source.

The condition for irrotational motion requires that at all
points in the field

o(rn) _dw
or o8 =0 (A1)
The equation of continuity is
b(rw) bn rw bp; n bp;
> t3s +P1 e (A2)

where p; is the dens1ty of the ﬁmd at any point.
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The source strength (mass flow per unit time) is denoted
by @. Then, for any circle enclosing the source, considera-
tions of symmetry and continuity, respectively, provide the
two integral relationships

j;bm' d¢=0 (A3)
and
f’ pror dp=0Q A9

The radial and circumferential components of the velocity
may be expanded in the series

w="V{ cos ¢—I—Z‘,—

:-1

n=—V(sin 0+ 332)

where A, and B, are functions of ¢. If r is large, it is suffi-
cient to retain only the first terms of each power series, so
that

w=V <cos ¢+ é)
(A5)

n=—V(sin ¢+€)

To the first power in (1/r), the square of the resultant velocity
is
w? 2 .
<U> _T+” =1+ (4 cos ¢-+B sin ¢)

For reversible adiabatic flow, the local density p; is related to
the density p of the undisturbed stream by

om0 (B

where M is the Mach number of the undisturbed stream and
v is the ratio of the specific heats. Thus, to the first power

in (1/r),

pi=p|1~2E (4 cos $+-B sin ¢)| (A6)
The solution is now obtained by inserting values from ex-
pressions (A5) and (A6) into the fundamental equations.
Substitutions of (A5) into the equation for irrotational
motion (A1) requires that A4 shall be a constant. Substitu-
tion of (A5) and (A6) into the equation of continuity then
gives
dB . g .
%(1 — A sin? ¢)=M?*(A4 cos 2¢-+ B sin 2¢)
which becomes upon integration
B(1—AM?sin? ¢)

=é M2A sin 2¢+C (A7)

where C is a constant. The integral equations (A3) and
(A4) become, respectively,
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2r
[“B im0
0
ME(2>_ .
TJ; Bsin 2¢ d¢>=21rA(1 —-%l")—;%

Substitution of the expression for B from equation (A7)
into the integral equation (A9) gives

(A8)
and

(A9)

Q1
T 2#pV [—\/ I—M]
while substitution into equation (A8) shows that C=0.
Thus, from equation (A7),
M?sin 2¢
T dxpV | _(1—DM?sin? ¢) /1 — M3

The expressions for the velocity components therefore
become

1
w=V cos ¢+§%[m
(A10)
M2 sin ¢ cos ¢

“Misin @) V1— 0

n=—Vsin¢—z L [(1

For a Mach number of zero these equations reduce to the
well-known results for a source in an incompressible fluid.

From equations (A10) the velocity components % and v,
parallel and perpendicular, respectively, to the direction of
the undisturbed stream, are found to be

Q cos ¢
=Vt e [41—M(1—M sin’ ¢)]

it
27rp1‘ 1—AM3sin? ¢

(A11)

The drag experienced by the source can be determined
by evaluating the integral

D=—J;2'{p, cos ¢+ paw(w cos ¢—n sin ¢)}r do

over any circle enclosing the source. To the accuracy pre-
viously employed, the pressure at any point is
pV? .

p,=p—7(A cos ¢+ B sin ¢) (A12)

Insertion of this expression, together with (A5) and (A6),

into the equation for drag gives finally

=—VQ (A13)

which is the same as for a source in an incompressible fluid.

It is apparent from considerations of symmetry that the lift
force of the source is zero.

The results of equations (A11l) can be used to study the

field of flow about a symmetrical airfoil at zero angle of

attack in & uniform stream. Such an airfoil can be repre-
gented by a suitable system of sources and sinks distributed
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continuously along the chord line. If the notation of figure
15 is used, the vertical velocity v, induced in an incompres-
sible stream at a given point (g, ¥,) on the surface of the
airfoil is

Y
/2]
_
u
t
’_( df/dx)dx
I 1
. ; 4 |
V a ’,' 'ﬁ x
ez Yo
o

FI1GURE 15—Velocity Induced by a symmetrical alrfoil.

qub

27rp —ﬂr_p o @o— x5’+:l/ Hz)‘llx (A14)

where (%%) is the strength per unit length of the source-

sink distribution in an incompressible stream. ¥rom the
second of equations (All) it follows that the velocity v, at
the same point in a compressible stream is

1 (* Y1=Fsing¢ (on

‘ ~27p Jo r(l—MZsin® ¢) \ dz_

or

_ dQ.
"_ 27rp f (Io—-’c)’-i-(l M’)Z/o( @ (Al5)

where (——) is the strength of the source-sink distribution

in the compressible case. For any given airfoil of small
thickness the condition that the flow shall be tangential to
the surface of the airfoil requires that »,=v, at all points on
the surface. This fact can be used to relate the source-sink
distributions for a thin airfoil in the compressible and incom-
pressible streams by considering the limiting forms of equa-
tions (A14) and (A15) as y, approaches zero.

Consider first the limiting form of equation (A14), whlch
may be written

=lim Yo
welimde e (E)e o
It is scen that even for 7,=0 the integral in this equation is
finite when evaluated over any interval of integration not
including the point z=z;. In the limit, the contribution of
such Intervals to the right-hand side of the equation is
therefore zero, and the equation may be written

ot 1 dQ,
py=lim lim 2%
¢ 0 7090 2P Jr—e  (Zo '—$52+y0 E
In evaluating the limit in this equation, care must be taken
that the limit with respect to 7, is taken first in every case.
Integration by parts gives
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Tote
ERTIRT 1 deQ L Ty—Z
”‘_hﬂﬂ%a[ e
To—¢
G &
f (#)tan—lm—%—?dx (A17)

By virtue of the first mean value theorem for integrals (ref-

erence 18, p. 65) the integral term in this equation may be
written

S (G2 e =), . [
(). [ o e

where (20—e) 2532 and 2,262 (Zo+¢). The division into
two integrals is necessary to ensure that the conditions under
which the mean-value theorem is applicable are fulfilled:

namely, that Q‘ -1 %—;x h
(1]

_1930 xdx_‘_

is continuous and that tan as

the same sign throughout the interval of integration.
Integration gives

[ s {(32) (2.
g4

In the limit, the value of the terms in the second bracket is
zero. Thus, only the first term need be retained in equation
(A17), which may now be written

it o 2 (8) | 4(22)_ ]

_1(30N i g S
—TPE hmhmt&nl~

Tmzy >0 o0 Yo

Thus the limiting form of equation (Al14) becomes finally
(A18)

where »; and (%) may now be considered as pertaining to

the same general chordwise station .

The limiting form of equation (A15) can be found in
similar fashion. In this case integration by parts gives in
place of equation (A17)

Tote
dQ. B
- R=L RC R = A
#Q\__1 o TE
fw (&)y=mp o i ar e 489

As before, the value of the integral term in this equation is
zero. The limiting form of equation (A15) becomes finally

-4

which is the same as (A18).

(A20)
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Since for any given airfoil v.=v, at all chordwise stations,
it follows from (A18) and (A20) that

(#)-(2)
dx ) \dz
that is, the source-sink distributions necessary to represent
any given thin symmetrical airfoil in a uniform stream are
identical for the compressible and incompressible case.
This result can be used to calculate the effect of compres-
sibility upon the field of induced velocities at a considerable
distance from the airfoil. The increase in longitudinal
velocity at a large distance 7; directly above or below the
midchord point of the airfoil in an incompressible fluid is

approximately
Nz, (5-2) (&) &

By virtue of the first of equations (A11), the corresponding
velocity at the same point in a compressible fluid is approxi-

mately.
we=V) 2wpy1’(1—W)3’”f (2 )(dQG

Thus, in view of equation (A21),

(A21)

(= V) =gz @ V) (a22)
that is, in a compressible fluid the increase in longitudinal
velocity at a point a considerable distance directly above or
below a symmetrical airfoil is 1/(1—M?)%7 times the increase
in longitudinel velocity at the same point in an incompress-
ible fluid.

The foregoing results can be used also to determine the
effect of compressibility upon the drag of an airfoil in & stream
having a longitudinal pressure gradient. Consider an un-
disturbed nonuniform stream having at some given point
a velocity V, a density p, and a streamwise pressure gradient
dp/dx. By virtue of Bernoulli’s equation, there must be at
this point a velocity gradient

av 1 d
&= Vd

This holds true both in the compressible and the incompress-
ible case. The velocity v a small distance z from the point
in question is then

(A23)

o=V4a L =v—2 (A24)

As a result of equation (A13), the drag experienced by an
airfoil placed at this point in the stream is, for both the com-
pressible and incompressible cases,

[ (Dl oD

where (dQjdz) is, as before, the strength per unit length
of the source-sink system necessary to represent the airfoil.
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In order to fulfill the condition that the airfoil is & closed
body, the source-sink system must be such that

J:(@) =0

Thus the drag is finally

D=y ), =()

in both the compressible and the incompressible case. If
the streamwise pressure gradient is small, equation (A21)
is still applicable; that is, the source-sink distributions
necessary to represent the airfoil in the compressible and
incompressible cases are identical. It therefore follows
from equation (A25) that the drag of an airfoil in a stream
having a longitudinal pressure gradient is unaffected by
fluid compressibility.

(A25)

APPENDIX B
LIST OF IMPORTANT SYMBOLS
¢ airfoil chord.
t airfoil thickness.
h tunnel height.
A g8 factor depending upon shape of base profile. (See

equation (3) and table I.)
2
¢ 41;(% ; factor depending upon size of airfoil relative

to tunnel.
- %(7‘;), factor depending upon size of airfoil relative to

tunnel.
o angle of attack.
¢ section lift coefficient.

Cm, section quarter-chord-moment coefficient.
section midchord-moment coefficient.

€4 section drag coefficient.
14 stream velocity.

M mach number.

M’ apparent Mach number at choking.
R Reynolds number,

z—”$ ratio of specific heat of gas at constant pressure
’

to specific heat at constant volume (for air y=1.4).
total head.
static pressure.
dynamic pressure.
mass density.
coefficient of viscosity.
absolute temperature.
speed of sound.
compressibility factor.
section drag.
section drag due to streamwise pressure gradient.
chordwise lift distribution in coefficient form.
interference lift distribution. (See equation (78) and

table I11.)

(See equation (71) and fig. 4.)
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P, local pressure coefficient. (See equation (69).) m  denotes conditions at minimum cross-sectional area

S; local pressure coefficient. (See equation (68).) between airfoil and tunnel walls.

z coordinate of points on chord line as measured from | L  denotes values on lower surface of airfoil.
leading edge. U  denotes values on upper surface of airfoil.

0 angular coordinate of points on chord line. (See equa-
tion (43).) ' REFERENCES

r radial distance in polar coordinates.

¢ polar ungle in polar coordinates (positive counter- 1. Lock, C. N. H.: The Interference of & Wind Tunne! on a Symmetri-
clockwise). cal Body. R. & M. No. 1275, British A. R. C., 1929.

t, projected thickness of airfoil. 2. Glauert, H.: Wind Tunnel Interference on Wings, Bodies and

¢ effective thickness of airfoil. Airscrews. R. & M. No. 1566, British A. R. C., 1933.

¢ dinate of b fil 3. Goldstein, 8.: Two-Dimensional Wind-Tunnel Interference. Part

’g' ordinate ot base prolile. II, R. & M. No. 1902, British A. R. C., 1942.

@Yq : 4. Goldstein, 8.: Steady Two-Dimensional Flow Past a S8olid Cylinder

dz slope of mean-camber line. in & Non-Uniform Stream. Part I, R. & M. No. 1902, British

source strength. A. R. C, 1942.
gp & 5. Goldstein, 8., and Young, A. D.: The Linear Perturbation Theory
b vorticity per unit length of chord line. of Compressible Flow, with Applications to Wind-Tunnel Inter-
z ference. R. & M. No. 1909, British A. R. C., 1942,

%4  horizontal component of velocity. 6. Allen, H. Julian: A Simplified Method for the Calculation of Air-
n  circumferential component of velocity in polar coor- 7 Glzuert’ H.: Tl: Effect of Compressibility on the Lift of an
. .. 1 . o) erofoil. R. & M. No. _1135, British A. R. C., 1927,

d:mates (positive count?rc QCk“m . . 8. Prandtl, L.: General Considerations on the Flow of Compressible

w  radial component of velocity in polar coordinates. Fluids. NACA TM No. 805, 1936.

A geometrical area of airfoil section. 9. von Kérmén, Th.: Compressibility Effects in Aerodynamics,

A, virtual area of airfoil section. 10. Ladwicg, s Widersiandskomeletur 1y Hoohemohwinhgkeitska

’ N P . , H.: e8¢ ()} -

4 cross sectional aren O.f empty ¢ el. nélen. Deutsche Luftfahrtforschung, Forschungsbericht Nr.

A, minimum cross-sectional area between model and 1955, April 1944.
tunnel walls. 11. von Kérmén, Th., and Tsien H. 8.: Boundary Layer in Compressi-

A; local cross-sectional area of stream tube. ble Fluids. Jour. Aero. Sci, vol. V, no. 6, April 1938, pp.

A, Fourier coefficients. (See equations (45) and (49).) 227-232.

. 12. Glauert, H.: The Elements of Aerofoil and Airscrew Theory.

Superscripts: Univ. Press, Cambridge, 1926.

(l) when pertaining to fuid properties, denotes values 13. Theodorsen, Theodore: On the Theory of Wing Sections with Par-
existing in tunnel far upstream from model; when ;isc;h;r%l:.eference to the Lift Distribution. NACA Rep. No.
pertaining to airfoil characteristics, denotes valuesin | 14 gtaok, John: The NACA High-Speed Wind Tunnel and Tests of
tunnel, coefficients being referred to apparent dy- Six Propeller Sections. NACA Rep. No. 463, 1933.
namic pressure g’. 16. Jacobs, Eastman N., Ward, Kenneth E., and Pinkerton, Roberl

(") denotes fluid properties far downstream from model. ,1}’1 The Chﬂm"_teriﬂtgs of 78 Related Airfoil Sections from

(*) denotes airfoil characteristics in tunnel as coefficients 453';81;;3;113 Variable-Density Wind Tunnel. NACA Rep. No.

. referred to true dynamic pressure g. 16. Jacobs, Eastman N., and Sherman, Albert: Airfoil Section Char-

Subscripts: acteristics as Affected by Variations of the Reynolds Number

¢ denotes values in compressible fluid (excepting V). NACA Rep. No. 586, 1937.

i denotes values in incompressible fluid. 17. Fage, A.: On the Two-Dimensional Flow past a Body of Symmetri-
l denotes local conditions at point in fluid. cal Cross-Section M0}11_1ted in a Channel of Finite Breadth
o - ) R. & M. No. 1223, British A. R. C., 1929.

8  denotes conditions existing far downstream when air- | 1g Whitaker, E. T., and Watson, G. N.: Modern Analysis. Univ.

foil and wake are replaced by source. Press, Cambridge, 4th ed., repr., 1940.
TABLE I.—VALUES OF A FOR VARIOUS BASE PROFILES
Conven- NAOGCA low-drag sections
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TasLe II.—COMPRESSIBILITY FACTORS FOR CORRECTION EQUATIONS
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TABLE III.—VALUES OF P, AT STANDARD CHORDWISE

STATIONS
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